• Title/Summary/Keyword: Fuzzy optimization

Search Result 647, Processing Time 0.026 seconds

Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling and Numerical Optimization Programming

  • Lee Jongbae;Park Chang-Woo;Sung Ha-Gyeong;Lim Joonhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.225-235
    • /
    • 2005
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included in the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Optimization of fuzzy logic controller using genetic algorithm (유전 알고리듬을 이용한 지능형 퍼지 제어기에 관한 연구)

  • Jang, Wook;Son, Yoo-Seok;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.960-963
    • /
    • 1996
  • In this paper, the optimization of a fuzzy controller using genetic algorithm is studied. The fuzzy controller has been widely applied to industries because it is highly flexible, robust easy to implement and suitable for complex systems. Generally, the design of fuzzy controller has difficulties in determining the structure of the rules and the membership functions. To solve these problems, the proposed method optimizes the structure of fuzzy rules and the parameters of membership functions simultaneously in an off-line method. The proposed method is evaluated through computer simulations.

  • PDF

Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization (Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

Optimal Design of Nonlinear Structural Systems via EFM Based Approximations (진화퍼지 근사화모델에 의한 비선형 구조시스템의 최적설계)

  • 이종수;김승진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.122-125
    • /
    • 2000
  • The paper describes the adaptation of evolutionary fuzzy model ins (EFM) in developing global function approximation tools for use in genetic algorithm based optimization of nonlinear structural systems. EFM is an optimization process to determine the fuzzy membership parameters for constructing global approximation model in a case where the training data are not sufficiently provided or uncertain information is included in design process. The paper presents the performance of EFM in terms of numbers of fuzzy rules and training data, and then explores the EFM based sizing of automotive component for passenger protection.

  • PDF

A Design of Dynamically Simultaneous Search GA-based Fuzzy Neural Networks: Comparative Analysis and Interpretation

  • Park, Byoung-Jun;Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.621-632
    • /
    • 2013
  • In this paper, we introduce advanced architectures of genetically-oriented Fuzzy Neural Networks (FNNs) based on fuzzy set and fuzzy relation and discuss a comprehensive design methodology. The proposed FNNs are based on 'if-then' rule-based networks with the extended structure of the premise and the consequence parts of the fuzzy rules. We consider two types of the FNNs topologies, called here FSNN and FRNN, depending upon the usage of inputs in the premise of fuzzy rules. Three different type of polynomials function (namely, constant, linear, and quadratic) are used to construct the consequence of the rules. In order to improve the accuracy of FNNs, the structure and the parameters are optimized by making use of genetic algorithms (GAs). We enhance the search capabilities of the GAs by introducing the dynamic variants of genetic optimization. It fully exploits the processing capabilities of the FNNs by supporting their structural and parametric optimization. To evaluate the performance of the proposed FNNs, we exploit a suite of several representative numerical examples and its experimental results are compared with those reported in the previous studies.

Application of Fuzzy Decision to Optimization of Induction Motor Design (퍼지 결정법을 적용한 유도전동기의 최적 설계)

  • 박정태;정현교
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 1997
  • In this paper, the application of fuzzy decision to optimization of induction motor design is proposed. This method can reflect the designer's experience, view, and judgment, but also can be applied to multi-objective optimization design easily. The electromagnetic performance of the induction motor are calculated by means of the equivalent magnetic circuit method. The design method is The $D^2L$ method which is combined with fuzzy decision and optimization algorithm. As the optimization algorithm, the evolution strategy(ES) is applied. The proposed algorithm is applied to a multiobjective optimization of an induction motor design where the motor should have less weight and, at the same time, have higher efficiency and power factor at rated operating points.

  • PDF

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.

Modeling and multiple performance optimization of ultrasonic micro-hole machining of PCD using fuzzy logic and taguchi quality loss function

  • Kumar, Vinod;kumari, Neelam
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.129-146
    • /
    • 2012
  • Polycrystalline diamond is an ideal material for parts with micro-holes and has been widely used as dies and cutting tools in automotive, aerospace and woodworking industries due to its superior wear and corrosion resistance. In this research paper, the modeling and simultaneous optimization of multiple performance characteristics such as material removal rate and surface roughness of polycrystalline diamond (PCD) with ultrasonic machining process has been presented. The fuzzy logic and taguchi's quality loss function has been used. In recent years, fuzzy logic has been used in manufacturing engineering for modeling and monitoring. Also the effect of controllable machining parameters like type of abrasive slurry, their size and concentration, nature of tool material and the power rating of the machine has been determined by applying the single objective and multi-objective optimization techniques. The analysis of results has been done using the MATLAB 7.5 software and results obtained are validated by conducting the confirmation experiments. The results show the considerable improvement in S/N ratio as compared to initial cutting conditions. The surface roughness of machined surface has been measured by using the Perthometer (M4Pi, Mahr Germany).

Prediction and control of buildings with sensor actuators of fuzzy EB algorithm

  • Chen, Tim;Bird, Alex;Muhammad, John Mazhar;Cao, S. Bhaskara;Melvilled, Charles;Cheng, C.Y.J.
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.307-315
    • /
    • 2019
  • Building prediction and control theory have been drawing the attention of many scientists over the past few years because design and control efficiency consumes the most financial and energy. In the literature, many methods have been proposed to achieve this goal by trying different control theorems, but all of these methods face some problems in correctly solving the problem. The Evolutionary Bat (EB) Algorithm is one of the recently introduced optimization methods and providing researchers to solve different types of optimization problems. This paper applies EB to the optimization of building control design. The optimized parameter is the input to the fuzzy controller, which gives the status response as an output, which in turn changes the state of the associated actuator. The novel control criterion for guarantee of the stability of the system is also derived for the demonstration in the analysis. This systematic and simplified controller design approach is the contribution for solving complex dynamic engineering system subjected to external disturbances. The experimental results show that the method achieves effective results in the design of closed-loop system. Therefore, by establishing the stability of the closed-loop system, the behavior of the closed-loop building system can be precisely predicted and stabilized.

GA based Sequential Fuzzy Modeling Using Fuzzy Equalization and Linguistic Hedge (퍼지 균등화와 언어적 Hedge를 이용한 GA 기반 순차적 퍼지 모델링)

  • 김승석;곽근창;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.827-832
    • /
    • 2001
  • In this paper, we propose a sequentially optimization method for fuzzy inference system using fuzzy equalization and linguistic hedge. The fuzzy equalization does not require the usual learning step for generating fuzy rules. However, it is too sensitive for the given input-output data set. So, we adopt a sequential scheme which sequentially optimizes the fuzzy inference system. Here, the parameters of fuzzy membership function obtained from the fuzzy equalization are optimized by the genetic algorithm, and then they are also modified to increase the performance index using the linguistic hedge. Finally, we applied it to rice taste data and got better results than previous ones.

  • PDF