• Title/Summary/Keyword: Fuzzy logics

Search Result 49, Processing Time 0.025 seconds

Set-theoretic Kripke-style Semantics for Weakly Associative Substructural Fuzzy Logics (약한 결합 원리를 갖는 준구조 퍼지 논리를 위한 집합 이론적 크립키형 의미론)

  • Yang, Eunsuk
    • Korean Journal of Logic
    • /
    • v.22 no.1
    • /
    • pp.25-42
    • /
    • 2019
  • This paper deals with Kripke-style semantics, which will be called set-theoretic Kripke-style semantics, for weakly associative substructural fuzzy logics. We first recall three weakly associative substructural fuzzy logic systems and then introduce their corresponding Kripke-style semantics. Next, we provide set-theoretic completeness results for them.

Development of ANN- and ANFIS-based Control Logics for Heating and Cooling Systems in Residential Buildings and Their Performance Tests (인공지능망과 뉴로퍼지 모델을 이용한 주거건물 냉난방 시스템 조절 로직 및 예비 성능 시험)

  • Moon, Jin-Woo
    • Journal of the Korean housing association
    • /
    • v.22 no.3
    • /
    • pp.113-122
    • /
    • 2011
  • This study aimed to develop AI- (Artificial Intelligence) based thermal control logics and test their performance for identifying the optimal thermal control method in buildings. For this objective, a conventional Two-Position On/Off logic and two AI-based variable logics, which applied ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-Fuzzy Inference System), have developed. Performance of each logic was tested in a typical two-story residential building in U.S.A. using the computer simulation incorporating MATLAB and IBPT (International Building Physics Toolbox). In the analysis of the test results, AI-based control logic presented the advanced thermal comfort with stability compared to the conventional logic while they did not show significant energy saving effects. In conclusion, the predictive and adaptive AI-based control logics have a potential to maintain interior air temperature more comfortably, and the findings in this study could be a solid foundation for identifying the optimal thermal control method in buildings.

Force controller of the robot gripper using fuzzy-neural fusion (퍼지-뉴럴 융합을 이용한 로보트 Gripper의 힘 제어기)

  • 임광우;김성현;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.861-865
    • /
    • 1991
  • In general, the fusion of neural network and fuzzy logic theory is based on the fact that neural network and fuzzy logic theory have the common properties that 1) the activation function of a neuron is similar to the membership function of fuzzy variable, and 2) the functions of summation and products of neural network are similar to the Max-Min operator of fuzzy logics. In this paper, a fuzzy-neural network will be proposed and a force controller of the robot gripper, utilizing the fuzzy-neural network, will be presented. The effectiveness of the proposed strategy will be demonstrated by computer simulation.

  • PDF

The implementation of a Lateral Controller for the Mobile Vehicle using Adaptive Fuzzy Logics (적응퍼지논리를 이용한 Mobile Vehicle의 횡방향 제어기 구현)

  • Kim, Myeong-Jung;Lee, Chang-Gu;Kim, Seong-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.249-256
    • /
    • 2000
  • This paper deals with the control of the lateral motion of a mobile vehicle. A mobile vehicle using in this experiment is able to adapt many unmanned automatic driving system, for example, like a automated product transporting system. This vehicle is consist of the two servomotors. One is used to accelerate this vehicle and the another is used to change this lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral motion of the vehicle. Therefore, the main aim of this paper is investigate the possibility of applying adaptive fuzzy control algorithms to a microprocessor-based servomotor controller which requires faster and more accurate response compared with many other industrial processes. Fuzzy control rules are derived by modelling an expert's driving actions. Experiments are performed using a mobile vehicle with sensing units, a microprocessor and a host computer.

  • PDF

The Neural-Fuzzy Control of a Transformer Cooling System

  • Lee, Jong-Yong;Lee, Chul
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2016
  • In transformer cooling systems, oil temperature is controlled through the use of a blower and oil pump. For this paper, set-point algorithms, a reset algorithm and control algorithms of the cooling system were developed by neural networks and fuzzy logics. The oil inlet temperature was set by a $2{\times}2{\times}1$ neural network, and the oil temperature difference was set by a $2{\times}3{\times}1$ neural network. Inputs used for these neural networks were the transformer operating ratio and the air inlet temperature. The inlet set temperature was reset by a fuzzy logic based on the transformer operating ratio and the oil outlet temperature. A blower was used to control the inlet oil temperature while the oil pump was used to control the oil temperature difference by fuzzy logics. In order to analysis the performance of these algorithms, the initial start-up test and the step change test were performed by using the dynamic model of a transformer cooling system. Test results showed that algorithms developed for this study were effective in controlling the oil temperature of a transformer cooling system.

ACTIVE FAULT-TOLERANT CONTROL OF INDUCTION MOTOR DRIVES IN EV AND HEV AGAINST SENSOR FAILURES USING A FUZZY DECISION SYSTEM

  • Benbouzid, M.E.H.;Diallo, D.;Zeraoulia, M.;Zidani, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.729-739
    • /
    • 2006
  • This paper describes an active fault-tolerant control system for an induction motor drive that propels an Electrical Vehicle(EV) or a Hybrid one(HEV). The proposed system adaptively reorganizes itself in the event of sensor loss or sensor recovery to sustain the best control performance given the complement of remaining sensors. Moreover, the developed system takes into account the controller transition smoothness in terms of speed and torque transients. In this paper which is the sequel of (Diallo et al., 2004), we propose to introduce more advanced and intelligent control techniques to improve the global performance of the fault-tolerant drive for automotive applications(e.g. EVs or HEVs). In fact, two control techniques are chosen to illustrate the consistency of the proposed approach: sliding mode for encoder-based control; and fuzzy logics for sensorless control. Moreover, the system control reorganization is now managed by a fuzzy decision system to improve the transitions smoothness. Simulations tests, in terms of speed and torque responses, have been carried out on a 4-kW induction motor drive to evaluate the consistency and the performance of the proposed fault-tolerant control approach.

The Triple I Method for Fuzzy Reasoning

  • Wang, Guo-Jun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.40-41
    • /
    • 2003
  • A new method, the Triple I method is proposed for solving the problem of fuzzy reasoning. The Triple I method for solving fuzzy modus ponens is compared with the CRI method i.e., Compositional Rule of Inference and reasonableness of the Triple I method is clarified. Moreover the Triple I method can be generalized to provide a theory of sustentation degrees. Lastly, the Triple I method can be bring into the framework of classic logics.

  • PDF

A fuzzy logic based bin picking technique (퍼지논리를 이용한 Bin picking 방법)

  • 김태원;서일홍;김기엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.979-983
    • /
    • 1991
  • A novel 2-dimensional matched filter of the parallel-jaw type using fuzzy logics is proposed for bin picking. Specifically, averaged pixel intensity of the windowed region for the filtering is considered to be fuzzy. Also membership function for darkness and brightness are designed by employing the intensite histogram of image. Then a rule is given to know how much a windowed region can be a possible holdsite. Furthermore eight rules are made to determine the part orientation, where Mamadi's resoning method is applied. To show the validities of our proposed technique. some experimental results are illustrated and compared with the results by conventional matched filter technique.

  • PDF

Online Automatic Gauge Controller Tuning Method by using Neuro-Fuzzy Model in a Hot Rolling Plant

  • Choi, Sung-Hoo;Lee, Young-Kow;Kim, Sang-Woo;Hong, Sung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1539-1544
    • /
    • 2005
  • The gauge control of the fishing mill is very important because more and more accurately sized hot rolled coils are demanded by customers recently. Because the mill constant and the plasticity coefficient vary with the specifications of the mill, the classification of steel, the strip width, the strip thickness and the slab temperature, the variation of these parameters should be considered in the automatic gauge control system(AGC). Generally, the AGC gain is used to minimize the effect of the uncertain parameters. In a practical field, operators set the AGC gain as a constant value calculated by FSU (Finishing-mill Set-Up model) and it is not changed during the operating time. In this paper, the thickness data signals that occupy different frequency bands are respectively extracted by adaptive filters and then the main cause of the thickness variation is analyzed. Additionally, the AGC gain is adaptively tuned to reduce this variation using the online tuning model. Especially ANFIS(Adaptive-Neuro-based Fuzzy Interface System) which unifies both fuzzy logics and neural networks, is used for this gain adjustment system because fuzzy logics use the professionals' experiences about the uncertainty and the nonlinearity of the system. Simulation is performed by using POSCO's data and the results show that proposed on-line gain adjustment algorithm has a good performance.

  • PDF

Acceleration of Building Thesaurus in Fuzzy Information Retrieval Using Relational products

  • Kim, Chang-Min;Kim, Young-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.240-245
    • /
    • 1998
  • Fuzzy information retrieval which uses the concept of fuzzy relation is able to retrieve documents in the way based on not morphology but semantics, dissimilar to traditional information retrieval theories. Fuzzy information retrieval logically consists of three sets : the set of documents, the set of terms and the set of queries. It maintains a fuzzy relational matrix which describes the relationship between documents and terms and creates a thesaurus with fuzzy relational product. It also provides the user with documents which are relevant to his query. However, there are some problems on building a thesaurus with fuzzy relational product such that it has big time complexity and it uses fuzzy values to be processed with flating-point. Actually, fuzzy values have to be expressed and processed with floating-point. However, floating-point operations have complex logics and make the system be slow. If it is possible to exchange fuzzy values with binary values, we could expect sp eding up building the thesaurus. In addition, binary value expressions require just a bit of memory space, but floating -point expression needs couple of bytes. In this study, we suggest a new method of building a thesaurus, which accelerates the operation of the system by pre-applying an ${\alpha}$-cut. The experiments show the improvement of performance and reliability of the system.

  • PDF