• 제목/요약/키워드: Fuzzy logic controller design

검색결과 450건 처리시간 0.028초

Design of Fault Tolerant Control System for Steam Generator Using Fuzzy Logic

  • Kim, Myung-Ki;Seo, Mi-Ro
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.321-328
    • /
    • 1998
  • A controller and sensor fault tolerant system jot a steam generator is designed with fuzzy logic. A structure of the : proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controlled and a sensor induced performances to identify Which Part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a charge in error of the system output an chosen as fuzzy variables. The fuzzy logic jot a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency, Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the : proposed fault tolerant control scheme jot a steam generator regulates welt water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even mote.

  • PDF

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • 제4권4호
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

Modified Ziegler-Nichols PID Controller Design using the Fuzzy Logic System

  • Jung, Kyung-kwon;Eom, Ki-hwan;Chung, Sung-boo;Lee, Hyun-kwan;Son, Dong-seol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.85.2-85
    • /
    • 2001
  • In this paper, we propose a modified Ziegler-Nichols PID controller using the fuzzy logic system. The proposed method is to parameterize a Ziegler-Nichols formula with a single parameter, and use the fuzzy logic system for automatic tuning of a single parameter of the modified Ziegler-Nichols formula. The fuzzy logic system has simple nine control rules. In order to verify the effectiveness of the proposed method, we simulated with the servo system. Simulation results demonstrate that better control performance can be achieved when compared with that of the Ziegler-Nichols PID controller.

  • PDF

하이브리드 신재생에너지 시스템의 최적제어를 위한 퍼지 로직 제어기 설계 (Design of Fuzzy Logic Controller for Optimal Control of Hybrid Renewable Energy System)

  • 장성대;지평식
    • 전기학회논문지P
    • /
    • 제67권3호
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, the optimal fuzzy logic controller(FLC) for a hybrid renewable energy system(HRES) is proposed. Generally, hybrid renewable energy systems can consist of wind power, solar power, fuel cells and storage devices. The proposed FLC can effectively control the entire HRES by determining the output power of the fuel cell or the absorption power of the electrolyzer. In general, fuzzy logic controllers can be optimized by classical optimization algorithms such as genetic algorithms(GA) or particle swarm optimization(PSO). However, these FLC have a disadvantage in that their performance varies greatly depending on the control parameters of the optimization algorithms. Therefore, we propose a method to optimize the fuzzy logic controller using the teaching-learning based optimization(TLBO) algorithm which does not have the control parameters of the algorithm. The TLBO algorithm is an optimization algorithm that mimics the knowledge transfer mechanism in a class. To verify the performance of the proposed algorithm, we modeled the hybrid system using Matlab Tool and compare and analyze the performance with other classical optimization algorithms. The simulation results show that the proposed method shows better performance than the other methods.

DESIGN OF A FPGA BASED ABWR FEEDWATER CONTROLLER

  • Huang, Hsuanhan;Chou, Hwaipwu;Lin, Chaung
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.363-368
    • /
    • 2012
  • A feedwater controller targeted for an ABWR has been implemented using a modern field programmable gate array (FPGA), and verified using the full scope simulator at Taipower's Lungmen nuclear power station. The adopted control algorithm is a rule-based fuzzy logic. Point to point validation of the FPGA circuit board has been executed using a digital pattern generator. The simulation model of the simulator was employed for verification and validation of the controller design under various plant initial conditions. The transient response and the steady state tracking ability were evaluated and showed satisfactory results. The present work has demonstrated that the FPGA based approach incorporated with a rule-based fuzzy logic control algorithm is a flexible yet feasible approach for feedwater controller design in nuclear power plant applications.

Design of Sliding Mode Fuzzy-Model-Based Controller Using Genetic Algorithms

  • Chang, Wook
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.615-620
    • /
    • 2001
  • This paper addresses the design of sliding model fuzzy-model-based controller using genetic algorithms. In general, the construction of fuzzy logic controllers has difficulties for the lack of systematic design procedure. To release this difficulties, the sliding model fuzzy-model-based controllers was presented by authors. In this proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Although, the stability and the performance is guaranteed by the proposed method, some design parameters have to be chosen by the designer manually. This problem can be solved by using genetic algorithms. The proposed method tunes the parameters of the controller, by which the reasonable accuracy and the control effort is achieved. The validity and the efficiency of the proposed method are verified through simulations.

  • PDF

새로운 Fuzzy Logic을 이용한 선박조타계의 제어 (Design of Ship's Steering System by Introducting the Improved Fuzzy Logic)

  • 이철영;채양범
    • 한국항해학회지
    • /
    • 제8권1호
    • /
    • pp.15-42
    • /
    • 1984
  • Many studies have been done in the field of fuzzy logic theory, but it's application to the ship's steering system is few until this date. This paper is to survey the effect of application of fuzzy logic control by new compositional rule of Inference to the ship's steering system. The controller is made up of a set of Linguistic Control Rules which are conditional linguistic statements connecting the inputs and output, and take the inputs derived from deviation angle and it's angular velocity. The Linguistic Control Rules are implemented on the digital computer to verify the performance of the fuzzy logic controller and simulations have been done in six cases of initial condition and disturbance type. Consequently, it was proved that the ship's steering system by introducing the F.L.C. is performed efficiently and less energy loss system compared with the conventional autopilot.

  • PDF

Adaptive Dual Fuzzy 알고리즘을 이용한 빌딩의 엘리베이터 군 제어기 설계 (A Design for Elevator Group Controller of Building using Adaptive Dual Fuzzy Algorithm)

  • 최승민;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.578-581
    • /
    • 2001
  • In this paper, the development of a new group controller for high-speed elevator is carried out utilizing approach of an adaptive dual fuzzy logic. A goals of control are the minimization of waiting time, mean-waiting time and long-waiting time in a building. when a new hall call is generated, adaptive dual fuzzy controller evaluate traffic pattern and change appropriately the membership function of fuzzy rule base. Control for co-operation among elevators in group control algorithm are essential, and the most critical control function in group controller is a effective and proper hall call assignment of elevators. Thy group elevator system utilizing adaptive dual fuzzy control reveals a great deal of improvement on its performance.

  • PDF

마이크로컨트롤러를 이용한 유도전동기의 퍼지속도제어기 설계 (A Design of Fuzzy Speed Controller for Induction Motor using Microcontroller)

  • 안정훈;양형렬;위석오;임영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1999-2001
    • /
    • 1998
  • A speed controller of a induction motor using Microcontroller and Fuzzy logic is presented in the paper. Generally, fuzzy logic controller is known as a controller which can be coped with a non-linear and a complex system. A fuzzy logic is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The results of experiment show excellence of the proposed system and that the proposed system is appropriate to control the speed of a induction motor for industrial application.

  • PDF

끝단 질량을 가진 복합재료 박판 보의 퍼지기법과 압전 감지기/작동기를 이용한 진동제어 (Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy Algorithm and Piezoelectric Sensor and Actuator)

  • 이윤규;강호식;송오섭
    • Composites Research
    • /
    • 제17권5호
    • /
    • pp.7-14
    • /
    • 2004
  • 본 연구에서는 끝단에 질량이 부착된 복합재료 박판 보의 동특성을 제어하기 위하여 퍼지 알고리즘을 이용한 적응 제어 기법에 대하여 고찰하였다. 적응제어기법을 구현하기 위해 감지기와 작동기의 역할을 할 수 있는 압전재료를 구조물의 중립면상에 삽입하였다. 끝단 질량이 변하는 경우, 비례제어 및 속도제어와 비교해 볼 때, 퍼지 알고리즘을 이용한 제어 기법이 복합재료 박판 보의 동적응답제어에 우수한 성능을 보였다.