• Title/Summary/Keyword: Fuzzy flux observer

Search Result 12, Processing Time 0.03 seconds

Fuzzy Gain Scheduling Flux Observer for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기 구동장치를 위한 퍼지이득조정 자속관측기)

  • 금원일;류지수;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.234-234
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer takes an adaptive scheduling gains where motet speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimated values of stator resistance and speed are included as observer parameters. The parameters of the PI controllers adopted in the adaptive law for the estimation of stator resistance and motor speed are determined by simple genetic algorithm. Simulation results in low speed region are given for comparison between proposed and conventional flux estimate scheme.

  • PDF

The Study of I.M. speed control using MRAC (MRAC방식의 유도전동기 속도제어에 관한 연구)

  • 전희종;김병진;정을기;박경옥;손희남
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.96-100
    • /
    • 1995
  • In this paper an induction motor control using fuzzy controller and neural network adptive observer is studied. The proposed observer which comprises neural network flux observer which comprises neural network flux observer and neural network torque observer is trained to learn the flux dynamics and torque dynamics and subjected to further on-line training by means of a backpropagation algorithem. Therefore it has been shown that the robust control of induction motor neglects the rotor time constant variations

  • PDF

A study on the rapid flux and speed estimation control of induction motor by the observer system using a Fuzzy logic (퍼지논리를 이용한 옵저버 시스템에 의한 유도전동기의 빠른 자속 및 속도 추정제어에 관한 연구)

  • Hwang, Lak-Hoon;Lee, Chun-sang;Kim, Jong-Lae;Jang, Byong-Gon;Lee, Sang-Yong;Na, Seng-Kwon;Son, Yeong-Tae;Kim, Hyun-Woo;Cho, Moon-Tack
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2764-2766
    • /
    • 1999
  • The information of the motor speed and flux are more necessary than the other informations which have to get for the induction motor drive. which is the exact informations of the speed and flux are known without the speed and flux sensors, many problems for induction motor drive will be solved. In this paper, it is studied on the method able to get the informations of the speed and the flux for the induction motor. The informations for the rotator speed and flux of the induction motor are estimated exactly and rapidly by the observer system proposed in this paper and the induction motor is controlled by those informations of the speed and flux exactly and rapidly by the fuzzy controller set in the observer system.

  • PDF

Efficiency Optimization with Sliding Mode Observer for Induction Motor (슬라이딩 모드 관측기를 이용한 유도전동기의 효율 최적화)

  • Lee, Sun-Young;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.74-76
    • /
    • 2009
  • In this paper, search method and sliding mode observer are developed for efficiency optimization of induction motor. The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. The search controller is based on the "Rosenbrock" method and finds the flux level at the minimum input power of induction motor. Once this optimal flux level has been determined, this information is utilized to update the rule base of a fuzzy controller A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is also used to compensate for mechanical uncertainties in the speed control of induction motor. Simulation results are presented to validate the proposed controller.

  • PDF

The Robut Vector Control for I.M. using Fuzzy-Neural Network (퍼지-신경망을 이용한 강인한 유도전동기 벡터제어)

  • Jeon, Hee-Jong;Kim, Beung-Jin;Son, Jin-Geun;Moon, Hark-Yong;Kim, Soo-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.293-295
    • /
    • 1995
  • In this article a fuzzy controller and neural network adaptive observer is proposed and applied to the case of induction motor control. The proposed observer which comprises neural network flux observer and neural network torque observer is trained to learn the flux dynamics and torque dynamics and subjected to further on-line training by means of a backpropagation algorithm. Therefore it has been shown that the robust control of induction motor neglects the rotor time constant variations.

  • PDF

Robust Adaptive Control for Efficiency Optimization of Induction Motors (유도전동기의 효율 최적화를 위한 강인 적응제어)

  • Hwang, Young-Ho;Park, Ki-Kwang;Kim, Hong-Pil;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1505-1506
    • /
    • 2008
  • In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.

  • PDF

Sensorless speed control of a Switched Reluctance Motor using Fuzzy position estimation algorithm (퍼지회전자 위치평가 알고리즘을 이용한 SRM센서리스 속도제어에 관한 연구)

  • 최재동;김갑동;안재황;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.343-351
    • /
    • 2000
  • This paper introduces a new rotor position estimation algorithm for the Switched Reluctance Motor, based on the magnetizing curves only at aligned and unaligned rotor positions. The flux linkage is calculated by measured data from phase voltage and phase current, and calculated data are used as the input of magnetizing profiles for rotor position detection. The fuzzy flux observer using novel knowledge-based fuzzy controller are presented to achieve sensorless control of the SRM. The method for selecting optimal angle is proposed for the rotor position detection. The robustness of the proposed algorithm is proved through the comparison of the simulation and experimental results.

  • PDF

Robust Adaptive Backstepping Control of Induction Motors Using Nonlinear Disturbance Observer (비선형 외란 관측기를 이용한 유도전동기의 강인 적응 백스테핑 제어)

  • Lee, Eun-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we propose a robust adaptive backstepping control of induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time-varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the fuzzy neural network(FNN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

Sensorless Control of Induction Motor using Adaptive FNN Controller (적응 FNN에 의한 유도전동기의 센서리스 제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.179-181
    • /
    • 2004
  • This paper is proposed an adaptive fuzzy-neural network(A-FNN) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using A closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.

  • PDF

Sensorless Vector Control of Induction Motor with HAI Controller (HAI 제어기에 의한 유도전동기의 센서리스 벡터제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.73-79
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent (HAI) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using a closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.