• Title/Summary/Keyword: Fuzzy evaluation

Search Result 763, Processing Time 0.024 seconds

Evaluation of User Profile Construction Method by Fuzzy Inference

  • Kim, Byeong-Man;Rho, Sun-Ok;Oh, Sang-Yeop;Lee, Hyun-Ah;Kim, Jong-Wan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.175-184
    • /
    • 2008
  • To construct user profiles automatically, an extraction method for representative keywords from a set of documents is needed. In our previous works, we suggested such a method and showed its usefulness. Here, we apply it to the classification problem and observe how much it contributes to performance improvement. The method can be used as a linear document classifier with few modifications. So, we first evaluate its performance for that case. The method is also applicable to some non-linear classification methods such as GIS (Generalized Instance Set). In GIS algorithm, generalized instances are built from training documents by a generalization function and then the K-NN algorithm is applied to them, where the method can be used as a generalization function. For comparative works, two famous linear classification methods, Rocchio and Widrow-Hoff algorithms, are also used. Experimental results show that our method is better than the others for the case that only positive documents are considered, but not when negative documents are considered together.

Machine Learning Methods for Trust-based Selection of Web Services

  • Hasnain, Muhammad;Ghani, Imran;Pasha, Muhammad F.;Jeong, Seung R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.38-59
    • /
    • 2022
  • Web services instances can be classified into two categories, namely trusted and untrusted from users. A web service with high throughput (TP) and low response time (RT) instance values is a trusted web service. Web services are not trustworthy due to the mismatch in the guaranteed instance values and the actual values achieved by users. To perform web services selection from users' attained TP and RT values, we need to verify the correct prediction of trusted and untrusted instances from invoked web services. This accurate prediction of web services instances is used to perform the selection of web services. We propose to construct fuzzy rules to label web services instances correctly. This paper presents web services selection using a well-known machine learning algorithm, namely REPTree, for the correct prediction of trusted and untrusted instances. Performance comparison of REPTree with five machine learning models is conducted on web services datasets. We have performed experiments on web services datasets using a ten k-fold cross-validation method. To evaluate the performance of the REPTree classifier, we used accuracy metrics (Sensitivity and Specificity). Experimental results showed that web service (WS1) gained top selection score with the (47.0588%) trusted instances, and web service (WS2) was selected the least with (25.00%) trusted instances. Evaluation results of the proposed web services selection approach were found as (asymptotic sig. = 0.019), demonstrating the relationship between final selection and recommended trust score of web services.

Dependence assessment in human reliability analysis under uncertain and dynamic situations

  • Gao, Xianghao;Su, Xiaoyan;Qian, Hong;Pan, Xiaolei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.948-958
    • /
    • 2022
  • Since reliability and security of man-machine system increasingly depend on reliability of human, human reliability analysis (HRA) has attracted a lot of attention in many fields especially in nuclear engineering. Dependence assessment among human tasks is a important part in HRA which contributes to an appropriate evaluation result. Most of methods in HRA are based on experts' opinions which are subjective and uncertain. Also, the dependence influencing factors are usually considered to be constant, which is unrealistic. In this paper, a new model based on Dempster-Shafer evidence theory (DSET) and fuzzy number is proposed to handle the dependence between two tasks in HRA under uncertain and dynamic situations. First, the dependence influencing factors are identified and the judgments on the factors are represented as basic belief assignments (BBAs). Second, the BBAs of the factors that varying with time are reconstructed based on the correction BBA derived from time value. Then, BBAs of all factors are combined to gain the fused BBA. Finally, conditional human error probability (CHEP) is derived based on the fused BBA. The proposed method can deal with uncertainties in the judgments and dynamics of the dependence influencing factors. A case study is illustrated to show the effectiveness and the flexibility of the proposed method.

Monitoring System for Abnormal Cutting States in the Drilling Operation using Motor Current (모터전류를 이용한 드릴가공에서의 절삭이상상태 감시 시스템)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.98-107
    • /
    • 1995
  • The in-process detection of drill wear and breakage is one of the most importnat technical problems in unmaned machining system. In this paper, the monitoring system is developed to monitor abnormal drilling states such as drill breakage, drill wear and unstable cutting using motor current. Drill breakage is detected by level monitoring. Tool wear is classified by fuzzy pattern recognition. The key feature for classification of tool wear is the estimated flank wear which is calculated by the proposed flank wear model. The characteristic of the model is not sensitive to the variation of cutting conditions but is sensitive to drill wear state. Unstable cutting states due to the unsmooth chip disposal and the overload are monitored by the variance/mean ratio of spindle motor current. Variance/mean ratio also includes the information about the prediction of drill wear and drill breakage. The evaluation experiments have shown that the developed system works very well.

  • PDF

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza;Bayat, Meysam
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.291-304
    • /
    • 2022
  • Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.

Web Page Evaluation based on Implicit User Reactions and Neural Networks

  • Lee, Dong-Hoon;Kim, Jae-Kwang;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.181-186
    • /
    • 2012
  • This paper proposes a method for evaluating web pages by considering implicit user reaction on web pages. Usually users spend more time and make more reactions, such as clicking, dragging and scrolling, while reading interesting pages. Based on this observation, a web page evaluation method by observing implicit user reaction is proposed. The system is designed with Ajax for observing user reactions, and neural networks for learning correlation between user reactions and usefulness of pages. The amounts of each type of user reactions are inputted to neural networks. Also the numbers of characters and images of pages are used as inputs because the amount of users' behaviors has a tendency to increase as the length of pages increase. The experiment is conducted with 113 people and 74 pages. Each page is ranked by users with a questionnaire. The proposed method shows more close ranking results to the user ranks than Google. That is, our system evaluates web pages more closely to users' viewpoint than Google. Although our experiment is limited, our result shows powerful potential of new element for web page evaluation. Some approaches evaluate web pages with their contents and some evaluate web pages with structural attributes, particularly links, of pages. Web page evaluation is for users, so the best evaluation can be done by users themselves. So, user feedback is one of the most important factors for web page evaluation. This paper proposes a new method which reflects user feedbacks on web pages.

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

Development of Arousal Level Estimation Algorithm by Membership Function and Dempster-Shafer′s Rule of Combination in Evidence (소속함수와 Dempster-Shafer 증거합 법칙을 이용한 긴장도 평가 알고리즘 개발)

  • 정순철
    • Science of Emotion and Sensibility
    • /
    • v.5 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • This research was the first step to develop Expert System for Evaluation of Human Sensibility, where human sensibility can be inferred from objective physiological signals. The study aim was to develop an algorithm in which human arousal level can be judged using measured physiological signals. Fuzzy theory was applied for mathematical handling of the ambiguity related to evaluation of human sensibility, and the degree of belonging to a certain sensibility dimension was quantified by membership function through which the sensibility evaluation was able to be done. Determining membership function was achieved using results from a physiological signal database of arousal/relaxation that was generated from imagination. To induce one final result (arousal level) based on measuring the results of more than 2 physiological signals and the membership function of each physiological signal, Dempster-Shafer's Rule of Combination in Evidence was applied, through which the final arousal level was inferred.

  • PDF

Ship s Maneuvering and Winch Control System with Voice Instruction Based Learning (음성지시에 의한 선박 조종 및 윈치 제어 시스템)

  • Seo, Ki-Yeol;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.517-523
    • /
    • 2002
  • In this paper, we propose system that apply VIBL method to add speech recognition to LIBL method based on human s studying method to use natural language to steering system of ship, MERCS and winch appliances and use VIBL method to alternate process that linguistic instruction such as officer s steering instruction is achieved via ableman and control steering gear, MERCS and winch appliances. By specific method of study, ableman s suitable steering manufacturing model embodies intelligent steering gear controlling system that embody and language direction base studying method to present proper meaning element and evaluation rule to steering system of ship apply and respond more efficiently on voice instruction of commander using fuzzy inference rule. Also we embody system that recognize voice direction of commander and control MERCS and winch appliances. We embodied steering manufacturing model based on ableman s experience and presented rudder angle for intelligent steering system, compass bearing arrival time, evaluation rule to propose meaning element of stationary state and correct steerman manufacturing model rule using technique to recognize voice instruction of commander and change to text and fuzzy inference. Also we apply VIBL method to speech recognition ship control simulator and confirmed the effectiveness.

Prioritizing the target watersheds for permeable pavement to reduce flood damage in urban watersheds considering future climate scenarios (미래 기후 시나리오를 고려한 도시 유역 홍수 피해 저감을 위한 투수성 포장 시설 대상 유역 우선순위 선정)

  • Chae, Seung Taek;Song, Young Hoon;Lee, Joowon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.159-170
    • /
    • 2022
  • As the severity of water-related disasters increases in urban watersheds due to climate change, reducing flood damage in urban watersheds is one of the important issues. This study focuses on prioritizing the optimal site for permeable pavement to maximize the efficiency of reducing flood damage in urban watersheds in the future climate environment using multi-criteria decision making techniques. The Mokgamcheon watershed which is considerably urbanized than in the past was selected for the study area and its 27 sub-watersheds were considered as candidate sites. Six General Circulation Model (GCM) of Coupled Model Intercomparison Project 6(CMIP6) according to two Shared Socioeconomic Pathway (SSP) scenarios were used to estimate future monthly precipitation for the study area. The Driving force-Pressure-State-Impact-Response (DPSIR) framework was used to select the water quantity evaluation criteria for prioritizing permeable pavement, and the study area was modeled using ArcGIS and Storm Water Management Model (SWMM). For the values corresponding to the evaluation criteria based on the DPSIR framework, data from national statistics and long-term runoff simulation value of SWMM according to future monthly precipitation were used. Finally, the priority for permeable pavement was determined using the Fuzzy TOPSIS and Minimax regret method. The high priorities were concentrated in the downstream sub-watersheds where urbanization was more progressed and densely populated than the upstream watersheds.