Kim, Byeong-Man;Rho, Sun-Ok;Oh, Sang-Yeop;Lee, Hyun-Ah;Kim, Jong-Wan
International Journal of Fuzzy Logic and Intelligent Systems
/
v.8
no.3
/
pp.175-184
/
2008
To construct user profiles automatically, an extraction method for representative keywords from a set of documents is needed. In our previous works, we suggested such a method and showed its usefulness. Here, we apply it to the classification problem and observe how much it contributes to performance improvement. The method can be used as a linear document classifier with few modifications. So, we first evaluate its performance for that case. The method is also applicable to some non-linear classification methods such as GIS (Generalized Instance Set). In GIS algorithm, generalized instances are built from training documents by a generalization function and then the K-NN algorithm is applied to them, where the method can be used as a generalization function. For comparative works, two famous linear classification methods, Rocchio and Widrow-Hoff algorithms, are also used. Experimental results show that our method is better than the others for the case that only positive documents are considered, but not when negative documents are considered together.
Hasnain, Muhammad;Ghani, Imran;Pasha, Muhammad F.;Jeong, Seung R.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.1
/
pp.38-59
/
2022
Web services instances can be classified into two categories, namely trusted and untrusted from users. A web service with high throughput (TP) and low response time (RT) instance values is a trusted web service. Web services are not trustworthy due to the mismatch in the guaranteed instance values and the actual values achieved by users. To perform web services selection from users' attained TP and RT values, we need to verify the correct prediction of trusted and untrusted instances from invoked web services. This accurate prediction of web services instances is used to perform the selection of web services. We propose to construct fuzzy rules to label web services instances correctly. This paper presents web services selection using a well-known machine learning algorithm, namely REPTree, for the correct prediction of trusted and untrusted instances. Performance comparison of REPTree with five machine learning models is conducted on web services datasets. We have performed experiments on web services datasets using a ten k-fold cross-validation method. To evaluate the performance of the REPTree classifier, we used accuracy metrics (Sensitivity and Specificity). Experimental results showed that web service (WS1) gained top selection score with the (47.0588%) trusted instances, and web service (WS2) was selected the least with (25.00%) trusted instances. Evaluation results of the proposed web services selection approach were found as (asymptotic sig. = 0.019), demonstrating the relationship between final selection and recommended trust score of web services.
Since reliability and security of man-machine system increasingly depend on reliability of human, human reliability analysis (HRA) has attracted a lot of attention in many fields especially in nuclear engineering. Dependence assessment among human tasks is a important part in HRA which contributes to an appropriate evaluation result. Most of methods in HRA are based on experts' opinions which are subjective and uncertain. Also, the dependence influencing factors are usually considered to be constant, which is unrealistic. In this paper, a new model based on Dempster-Shafer evidence theory (DSET) and fuzzy number is proposed to handle the dependence between two tasks in HRA under uncertain and dynamic situations. First, the dependence influencing factors are identified and the judgments on the factors are represented as basic belief assignments (BBAs). Second, the BBAs of the factors that varying with time are reconstructed based on the correction BBA derived from time value. Then, BBAs of all factors are combined to gain the fused BBA. Finally, conditional human error probability (CHEP) is derived based on the fused BBA. The proposed method can deal with uncertainties in the judgments and dynamics of the dependence influencing factors. A case study is illustrated to show the effectiveness and the flexibility of the proposed method.
Journal of the Korean Society for Precision Engineering
/
v.12
no.5
/
pp.98-107
/
1995
The in-process detection of drill wear and breakage is one of the most importnat technical problems in unmaned machining system. In this paper, the monitoring system is developed to monitor abnormal drilling states such as drill breakage, drill wear and unstable cutting using motor current. Drill breakage is detected by level monitoring. Tool wear is classified by fuzzy pattern recognition. The key feature for classification of tool wear is the estimated flank wear which is calculated by the proposed flank wear model. The characteristic of the model is not sensitive to the variation of cutting conditions but is sensitive to drill wear state. Unstable cutting states due to the unsmooth chip disposal and the overload are monitored by the variance/mean ratio of spindle motor current. Variance/mean ratio also includes the information about the prediction of drill wear and drill breakage. The evaluation experiments have shown that the developed system works very well.
Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.12
no.2
/
pp.181-186
/
2012
This paper proposes a method for evaluating web pages by considering implicit user reaction on web pages. Usually users spend more time and make more reactions, such as clicking, dragging and scrolling, while reading interesting pages. Based on this observation, a web page evaluation method by observing implicit user reaction is proposed. The system is designed with Ajax for observing user reactions, and neural networks for learning correlation between user reactions and usefulness of pages. The amounts of each type of user reactions are inputted to neural networks. Also the numbers of characters and images of pages are used as inputs because the amount of users' behaviors has a tendency to increase as the length of pages increase. The experiment is conducted with 113 people and 74 pages. Each page is ranked by users with a questionnaire. The proposed method shows more close ranking results to the user ranks than Google. That is, our system evaluates web pages more closely to users' viewpoint than Google. Although our experiment is limited, our result shows powerful potential of new element for web page evaluation. Some approaches evaluate web pages with their contents and some evaluate web pages with structural attributes, particularly links, of pages. Web page evaluation is for users, so the best evaluation can be done by users themselves. So, user feedback is one of the most important factors for web page evaluation. This paper proposes a new method which reflects user feedbacks on web pages.
Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.
This research was the first step to develop Expert System for Evaluation of Human Sensibility, where human sensibility can be inferred from objective physiological signals. The study aim was to develop an algorithm in which human arousal level can be judged using measured physiological signals. Fuzzy theory was applied for mathematical handling of the ambiguity related to evaluation of human sensibility, and the degree of belonging to a certain sensibility dimension was quantified by membership function through which the sensibility evaluation was able to be done. Determining membership function was achieved using results from a physiological signal database of arousal/relaxation that was generated from imagination. To induce one final result (arousal level) based on measuring the results of more than 2 physiological signals and the membership function of each physiological signal, Dempster-Shafer's Rule of Combination in Evidence was applied, through which the final arousal level was inferred.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.6
/
pp.517-523
/
2002
In this paper, we propose system that apply VIBL method to add speech recognition to LIBL method based on human s studying method to use natural language to steering system of ship, MERCS and winch appliances and use VIBL method to alternate process that linguistic instruction such as officer s steering instruction is achieved via ableman and control steering gear, MERCS and winch appliances. By specific method of study, ableman s suitable steering manufacturing model embodies intelligent steering gear controlling system that embody and language direction base studying method to present proper meaning element and evaluation rule to steering system of ship apply and respond more efficiently on voice instruction of commander using fuzzy inference rule. Also we embody system that recognize voice direction of commander and control MERCS and winch appliances. We embodied steering manufacturing model based on ableman s experience and presented rudder angle for intelligent steering system, compass bearing arrival time, evaluation rule to propose meaning element of stationary state and correct steerman manufacturing model rule using technique to recognize voice instruction of commander and change to text and fuzzy inference. Also we apply VIBL method to speech recognition ship control simulator and confirmed the effectiveness.
Chae, Seung Taek;Song, Young Hoon;Lee, Joowon;Chung, Eun-Sung
Journal of Korea Water Resources Association
/
v.55
no.2
/
pp.159-170
/
2022
As the severity of water-related disasters increases in urban watersheds due to climate change, reducing flood damage in urban watersheds is one of the important issues. This study focuses on prioritizing the optimal site for permeable pavement to maximize the efficiency of reducing flood damage in urban watersheds in the future climate environment using multi-criteria decision making techniques. The Mokgamcheon watershed which is considerably urbanized than in the past was selected for the study area and its 27 sub-watersheds were considered as candidate sites. Six General Circulation Model (GCM) of Coupled Model Intercomparison Project 6(CMIP6) according to two Shared Socioeconomic Pathway (SSP) scenarios were used to estimate future monthly precipitation for the study area. The Driving force-Pressure-State-Impact-Response (DPSIR) framework was used to select the water quantity evaluation criteria for prioritizing permeable pavement, and the study area was modeled using ArcGIS and Storm Water Management Model (SWMM). For the values corresponding to the evaluation criteria based on the DPSIR framework, data from national statistics and long-term runoff simulation value of SWMM according to future monthly precipitation were used. Finally, the priority for permeable pavement was determined using the Fuzzy TOPSIS and Minimax regret method. The high priorities were concentrated in the downstream sub-watersheds where urbanization was more progressed and densely populated than the upstream watersheds.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.