• Title/Summary/Keyword: Fuzzy controller strategy

Search Result 125, Processing Time 0.028 seconds

Design of Fuzzy Logic Controller of HVDC using an Adaptive Evolutionary Algorithm (적응진화 알고리즘을 이용한 초고압 직류계통의 퍼지제어기 설계)

  • Choe, Jae-Gon;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.205-211
    • /
    • 2000
  • This paper presents an optimal design method for fuzzy logic controller (FLC) of HVDC using an Adaptive Evolutionary Algorithm(AEA). We have proposed the AEA which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary algorithms. The AEA is used for tuning fuzzy membership functions and scaling constants. Simulation results show that disturbances are well damped and the dynamic performances of FLC have better responses than those of PD controller when AC system load changes suddenly.

  • PDF

A Design of Tracking Controller of Wheeled Mobile Robot using Fuzzy Logic and Genetic Algorithm (퍼지논리와 유전알고리즘을 이용한 차륜형 이동로봇의 제어기 설계)

  • Kim, Dae-Jun;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2837-2839
    • /
    • 2000
  • We design a stable controller for a mobile robot with variable gains and reference velocity in order to apply the proper gains and reference velocity, which are generated with fuzzy logic in on-line. The stability is guranteed by the Lyapunov theory. The fuzzy logic rules is found in off-line with GA strategy which drives each object function to be the least. The proposed controller is applied smooth path tracking due to the local path planing. Simulation results show robust performances under a different initial conditions.

  • PDF

A Study on Speed Control of the Switched Reluctance Motor using Fuzzy PI Controller (퍼지 PI 제어기를 사용한 스위치드 리럭턴스 전동기의 속도제어에 관한 연구)

  • Ryoo, Hong-Je;Kang, Wook;Kim, Hak-Sung;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.165-168
    • /
    • 1994
  • The paper deals with the fuzzy PI control of a switched reluctance motor drive. Fuzzy algorithm based on linguistic rules describing the operator's control strategy is applied to speed control of the SRM. Simulation and experimental results show that performance of the furry PI controller is superior to that of conventional PI controller. In particular the robustness of the system is improved.

  • PDF

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

A Four Leg Shunt Active Power Filter Predictive Fuzzy Logic Controller for Low-Voltage Unbalanced-Load Distribution Networks

  • Fahmy, A.M.;Abdelslam, Ahmed K.;Lotfy, Ahmed A.;Hamad, Mostafa;Kotb, Abdelsamee
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.573-587
    • /
    • 2018
  • Recently evolved power electronics' based domestic/residential appliances have begun to behave as single phase non-linear loads. Performing as voltage/current harmonic sources, those loads when connected to a three phase distribution network contaminate the line current with harmonics in addition to creating a neutral wire current increase. In this paper, an enhanced performance three phase four leg shunt active power filter (SAPF) controller is presented as a solution for this problem. The presented control strategy incorporates a hybrid predictive fuzzy-logic based technique. The predictive part is responsible for the SAPF compensating current generation while the DC-link voltage control is performed by a fuzzy logic technique. Simulations at various loading conditions are carried out to validate the effectiveness of the proposed technique. In addition, an experimental test rig is implemented for practical validation of the of the enhanced performance of the proposed technique.

Improvement of Strategy Algorithm for Soccer Robot (축구 로봇의 전략 알고리즘 개선)

  • 김재현;이대훈;이성민;최환도;김중완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.177-181
    • /
    • 2001
  • This paper presents an strategy algorithm of a soccer robot. We simply classified strategy of soccer robot as attack and defense. We use DC-motor in our Soccer Robot. We use the vision system made by MIRO team of Kaist and Soty team for image processing. Host computer is made by Pentium III. The RF module is used for the communication between each robot and the host computer. Fuzzy logic is applied to the path planning of our robot. We improve strategy algorithm of soccer robot. Here we explain improvement of strategy algorithm and fault of the our soccer robot system.

  • PDF

Auto Generation of Fuzzy Control Rule using Neural-Fuzzy Fusion (뉴럴-퍼지 융합을 이용한 퍼지 제어 규칙의 자동생성에 관한 연구)

  • Lim, Kwang-Woo;Kim, Yong-Ho;Kang, Hoon;Jeon, Hong-Tae
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.120-129
    • /
    • 1992
  • In this paper we propose a fuzzy-neural network(FNN) which includes both advantages of the fuzzy logic and the neural network. The basic idea of the FNN is to realize the fuzzy rule-base and the process of reasoning by neural network and to make the corresponding parameters be expressed by the connection weights of neural network. After constructing the FNN, a novel controller consisting of a conventional P-controller and a FNN is explained. In this control scheme, the rule-base of a FNN are automatically generated by error back-propagation algorithm. Also the parallel connection of the P-controller and the FNN can guarantee the stability of a plant at initial stage before the rules are completely created. Finally the effectiveness of the proposed strategy will be verified by computer simulations using a 2 degree of freedom robot manipulator.

  • PDF

Novel Control Method for a Hybrid Active Power Filter with Injection Circuit Using a Hybrid Fuzzy Controller

  • Chau, MinhThuyen;Luo, An;Shuai, Zhikang;Ma, Fujun;Xie, Ning;Chau, VanBao
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.800-812
    • /
    • 2012
  • This paper analyses the mathematical model and control strategies of a Hybrid Active Power Filter with Injection Circuit (IHAPF). The control strategy based on the load harmonic current detection is selected. A novel control method for a IHAPF, which is based on the analyzed control mathematical model, is proposed. It consists of two closed-control loops. The upper closed-control loop consists of a single fuzzy logic controller and the IHAPF model, while the lower closed-control loop is composed of an Adaptive Network based Fuzzy Inference System (ANFIS) controller, a Neural Generalized Predictive (NGP) regulator and the IHAPF model. The purpose of the lower closed-control loop is to improve the performance of the upper closed-control loop. When compared to other control methods, the simulation and experimental results show that the proposed control method has the advantages of a shorter response time, good online control and very effective harmonics reduction.

Stabilization Control of the Inverted Pendulum System by Hierarchical Fuzzy Inference Technique (계층적 퍼지추론기법에 의한 도립진자 시스템의 안정화 제어)

  • Lee, Joon-Tark;Chong, Hyeng-Hwan;Kim, Tae-Woo;Choi, Woo-Jin;Park, Chong-Hun;Kim, Hyeng-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1104-1106
    • /
    • 1996
  • In this paper, a hierarchical fuzzy controller is proposed for the stabilization control of the inverted pendulum system. The design of controller for that system is difficult because of its complicated nonlinear mathematical model with unknown parameters. Conventional fuzzy control strategy based only on dynamics of pendulum made have failed to stabilize. However, proposed control strategies are to swing pendulum from natural stable up equilibrium point to an unstable equilibrium point and are to transport a cart from an arbitrary position toward a center of rail. Thus, the proposed fuzzy stabilization controller have a hierarchical fuzzy inference structure; that is, the lower level is for inference interface for the virtual equilibrium point and the higher level one for the position control of cart according to the firstly inferred virtual equilibrium point.

  • PDF

Implementation of an Automation System Using Fuzzy Expertized Control Algorithm for the Cultivation in a Greenhouse (퍼지 전문가 제어 기법을 이용한 시설재배 자동화 소프트웨어의 구현)

  • Kim, Seung-Woo
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.1
    • /
    • pp.67-77
    • /
    • 2004
  • In this paper, a new approach to the automation of the cultivation in a green house is suggested and a practical automatic control cultivation system is implemented. To automatically control and optimize the very nonlinear and time-varying growth of farm products, a hybrid strategy(FECA, Fuzzy Expertized Control Algorithm) is proposed which serially combines a fuzzy expert system with the fuzzy logic control. The fuzzy expert system(FMES, Fuzzy Model-based Expert System is intended to overcome the non-linearity of the growth of farm products. The part of fuzzy controller(FLC, Fuzzy Logic Controller) is incorporated to solve the time-variance of the growth of farm products. Finally, the efficiency and the effectiveness of the implemented agricultural automation system is presented through the cultivation results.

  • PDF