• 제목/요약/키워드: Fuzzy control rules

검색결과 654건 처리시간 0.028초

안전도 신호 분석을 통한 지능형 로봇 제어 기법의 개발 (Development of Intelligent Robot Control Technology By Electroocculogram Analysis)

  • 김창현;이주장;김민성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.755-762
    • /
    • 2004
  • In this research, EOG(Electrooculogram) signal was analyzed to predict the subject's intention using a fuzzy classifier. The fuzzy classifier is built automatically using the EOG data and evolutionary algorithms. An assistant robot manipulator in redundant configuration has been developed, which operates according to the EOG signal classification results. For automatic fuzzy model construction without any experts' knowledge, an evolutionary algorithm with the new representation scheme, design of adequate fitness function and evolutionary operators, is proposed. The proposed evolutionary algorithm can optimize the number of fuzzy rules, the number of fuzzy membership functions, parameter values for the each membership functions, and parameter values for the consequent parts. It is shown that the fuzzy classifier built by the proposed algorithm can classify the EOG data efficiently. Intelligent motion planner that consists of several neural networks are used for control of robot manipulator based upon EOG classification results.

스왐기반 퍼지시스템을 이용한 코크오븐 연소제어 모델링 (A combustion control modeling of coke oven by Swarm-based fuzzy system)

  • 고언태;황석균;이진수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.493-495
    • /
    • 2005
  • This paper proposes a swarm-based fuzzy system modeling technique for coke oven combustion control diagnosis. The coke plant produces coke for the blast furnace plant in steel making process by charging coal into oven and supplying gas to carbonize it. A conventional mathematical model for coke oven combustion control has been used to control the amount of gas input, but it does not work well because of highly nonlinear feature of coke plant. To solve this problem, swarm-based fuzzy system modeling technique is suggested to construct a diagnosis model of coke oven combustion control. Based on the measured input-output data pairs, the fuzzy rules are generated and the parameters are tuned by the PSO(Particle Swarm Optimizer) to increase the accuracy of the fuzzy system is operated. This system computes the proper amount of gas input taking the operation conditions of coke oven into account, and compares the computed result with the supplied gas input.

  • PDF

Look-up table based self organizing fuzzy control

  • Choi, Han-Soo;Jeong, Heon;Kim, Young-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.127-130
    • /
    • 1995
  • Fuzzy controllers have proven to be powerful in controlling dynamic processes where mathematical models are unknown or intractable and ill-defined. The way of improving the performance of a fuzzy controller is based on making up rules, constructing membership functions, selecting a defuzzification method and adjusting input-output scaling factors. But there are many difficulties in tuning those to optimize a fuzzy controller. So, in this paper, we propose the look-up table based self-orgenizing fuzzy controller (LSOFC) which optimizes look-up values resulting from the above fuzzy processes. We use the plus-minus tuning method(PMTM), scanning the value through the processes of addition and subtraction. Simulation results demonstrate that the performance of LSOFC is far better than that of a non-tuning fuzzy controller.

  • PDF

뉴로-퍼지 제어기를 이용한 부하를 갖는 교류 서보 전동기의 속도제어 (Speed Control of AC Servo Motor with Loads Using Neuro-Fuzzy Controller)

  • 강영호;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권8호
    • /
    • pp.352-359
    • /
    • 2002
  • A neuro-fuzzy controller has some problems that he difficulty of tuning up the membership function and fuzzy rules, long time of inferencing and defuzzifying compare to PID. Also, the fuzzy controller's own defect as a PD controller has. In this study, it is proposed two methods to solve these problems. The first method is that inner fuzzy rules are tuned up automatically by the back propagation learning according to error patterns. And the second method is a new type defuzzification method that shorten the calculation time of an inferencing and a defuzzifying. In this study, it is designed the new type neuro-fuzzy controller that improves the fast response and the stability of a system by using the proposed methods. And, the designed controller is named EPLNFC(Error pattern Learning Neuro-Fuzzy Controller). To evaluate the fast response and the stability of EPLNFC designed in this study, EPLNFC is applied to a speed control of a DC motor and AC motor.

모호논리를 이용한 초임게유체추출공정의 제어 (Control of superoritioal fluid extraotion process using fuzzy logio)

  • 유두선;이광순;남성우;김정한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.246-251
    • /
    • 1990
  • A fuzzy control scheme has been proposed for a supercritical extraction process which has attracted much attention recently as a new separation technology. Based on the manual operation experience, three control pairs between manipulated and output variables are selected first and then seven membership functions are defined for control error and time rate of the error, respectively for each control pair, resulting in forty nine Fuzzy control rules. In addition to these, the membership functions are defined in two steps (coarse and fine) to enhance control performance. Fuzzy inference is performed using MAX-MTN composition rule and defuzzified control output is calculated based on center of gravity method. The prosed Fuzzy control scheme has been assessed through numerical simulation. As a result, the proposed scheme shows good control performance comparable with that by INA(inverse nyquist array) which usually requires complicated design procedure.

  • PDF

A Study on Target-Tracking Algorithm using Fuzzy-Logic

  • Kim, Byeong-Il;Yoon, Young-Jin;Won, Tae-Hyun;Bae, Jong-Il;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.206-209
    • /
    • 1999
  • Conventional target tracking techniques are primarily based on Kalman filtering or probabilistic data association(PDA). But it is difficult to perform well under a high cluttered tracking environment because of the difficulty of measurement, the problem of mathematical simplification and the difficulty of combined target detection for tracking association problem. This paper deals with an analysis of target tracking problem using fuzzy-logic theory, and determines fuzzy rules used by a fuzzy tracker, and designs the fuzzy tracker by using fuzzy rules and Kalman filtering.

  • PDF

유전 알고리듬을 이용한 퍼지모델의 자동 동정 (Automatic Fuzzy Model Identification Using Genetic Algorithm)

  • 손유석;장욱;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1009-1011
    • /
    • 1996
  • This paper presents an approach to building multi-input and single-output fuzzy models for nonlinear data-based systems. Such a model is composed of fuzzy rules, and its output is inferred by simplified reasoning. Optimal structure and membership parameters for a fuzzy model are automatically and simultaneously identified by GA(Genetic Algorithm). Numerical examples are provided to evaluate the feasibility of the proposed approach. Comparison shows that the suggested approach can produce a fuzzy model with higher accuracy and a smaller number of fuzzy rules than the ones achieved previously in other methods.

  • PDF

유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PI 제어기 설계 (Design of a GA-Based Fuzzy PI Controller for Optical Disk Drive)

  • 유종화;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.413-417
    • /
    • 2004
  • This paper proposes a fuzzy proportional-Integral (PI) controller for the precise tracking control of optical disk systems based on the genetic algorithm (GA). The fuzzy PI control rules are optimized by the GA to yield an optimal fuzzy PI controller. We validate the feasibility of the proposed method through a numerical simulation.

  • PDF

자기 조정맵을 갖는 퍼지-뉴럴 제어기의 설계 (On design of the fuzzy neural controller with a self-organizing map)

  • 김성현;조현찬;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.408-411
    • /
    • 1993
  • In this paper, we propose the Fuzzy Neural Controller with a Self-Organizing Map based on the fuzzy relation neuron. The fuzzy ndes expressing the input-output relation of the system are obtained by using the fuzzy relation neuron and updated automatically by means of the generalized delta rule. Also, the proposed method has a capability to express the knowledge acquired from the input-output data in form of fuzzy inferences rules. The learning algorithm of this fuzzy relation neuron is described. The effectiveness of the proposed fuzzy neural controller is illustrated by applying it to a number of test data sets.

  • PDF

자동조정 퍼지룰을 이용한 슬레이브 암의 시각서보 (An Auto-Tunning Fuzzy Rule-Based Visual Servoing Algorithm for a Alave Arm)

  • 김주곤;차동혁;김승호
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3038-3047
    • /
    • 1996
  • In telerobot systems, visual servoing of a task object for a slave arm with an eye-in-hand has drawn an interesting attention. As such a task ingenerally conducted in an unstructured environment, it is very difficult to define the inverse feature Jacobian matrix. To overcome this difficulty, this paper proposes an auto-tuning fuzzy rule-based visual servo algorithm. In this algorithm, a visual servo controller composed of fuzzy rules, receives feature errors as inputs and generates the change of have position as outputs. The fuzzy rules are tuned by using steepest gradient method of the cost function, which is defined as a quadratic function of feature errors. Since the fuzzy rules are tuned automatically, this method can be applied to the visual servoing of a slave arm in real time. The effctiveness of the proposed algorithm is verified through a series of simulations and experiments. The results show that through the learning procedure, the slave arm and track object in real time with reasonable accuracy.