• Title/Summary/Keyword: Fuzzy control

Search Result 4,184, Processing Time 0.036 seconds

Hybrid State Space Self-Tuning Fuzzy Controller with Dual-Rate Sampling

  • Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae;L. S. Shieh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.244-249
    • /
    • 1998
  • In this paper, the hybrid state space self-tuning control technique Is studied within the framework of fuzzy systems and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital control of chaotic systems. An equivalent fast-rate discrete-time state-space model of the continuous-time system is constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is then convened into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed technique enables us to systematically and effective]y carry out framework for modeling and control of chaotic systems. The proposed method has been successfully applied for controlling the chaotic trajectories of Chua's circuit.

  • PDF

Implementation of Temperature Measuring Sl Control System sing Fuzzy Theory (Fuzzy 이론을 이용한 온도 계측제어 시스템의 구현)

  • 박정훈;강문성;김윤호;유광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.282-286
    • /
    • 1999
  • This paper describes the implementation of a fuzzy temperature measuring & control system to control the water temperature in plant. This system consisted of mainly three parts; sensing part, control part that includes a control algorithms introduced the fuzzy theory, and actuating part. The control algorithms of control part are utilized a look-up table method and firmware technique using one-chip microprocessor(89C52). For evaluating the performance of a fuzzy control system, the experiment results of a fuzzy controller are compared with these of a conventional PID controller which provides an auto-tuning function. The experiment results show that the proposed controller has a good control performance and is robust to external disturbance.

  • PDF

A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구)

  • Chung, Hyeng-Hwan;Kim, Sang-Hyo;Joo, Seok-Min;Lee, Jeong-Phil;Lee, Dong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

A STUDY ON CHARACTERISTICS OF DEFUZZYFICATION METHODS IN FUZZY CONTROL

  • 송원경;이종필;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.98-103
    • /
    • 1997
  • Defuzzification plays a great role in fuzzy control system. Defuzzification is a process which maps from a space defined over an output universe of discourse into a space of nonfuzzy(crisp) number. But, it's impossible to convert a fuzzy set into a numeric value without losing some information during defuzzification. Also it's very hard to find a number that best represents a fuzzy set. Many methods have been used for defuzzification but most of then were problem dependent. There has been no rule which guides how to select a method that is suitable to solve given problem. Here, we have investigated most widely used methods and we have analyzed their characteristics and evaluated them. D. Driankov and Mizumoto have suggested 5 criteria which the‘ideal’defuzzification method should satisfy. But, they didn't considered about control action. Output fuzzy set if not only a fuzzy set but also a sequence of control action. We suggested 4 new criteria which describe sequence of cont ol action from some experiments. In addition, we have compared each method in simple adaptive fuzzy control. COG(Center of Gravity), or COS(Center of Sums) methods were successful in fuzzy control. However, at transition region, MOM(Mean of Maxima) was best among others in adaptive fuzzy control.

  • PDF

Design of fuzzy digital PI+D controller using simplified indirect inference method (간편 간접추론방법을 이용한 퍼지 디지털 PI+D 제어기의 설계)

  • Chai, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • This paper describes the design of fuzzy digital PID controller using a simplified indirect inference method. First, the fuzzy digital PID controller is derived from the conventional continuous-time linear digital PID controller,. Then the fuzzification, control-rule base, and defuzzification using SIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete-time fuzzy version of the conventional PID controller, which has the same linear structure, but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated that the proposed method provides better control performance than the one proposed by D. Misir et al.

  • PDF

Comparing type-1, interval and general type-2 fuzzy approach for dealing with uncertainties in active control

  • Farzaneh Shahabian Moghaddam;Hashem Shariatmadar
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.199-212
    • /
    • 2023
  • Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.

Fuzzy polynomial neural network model and its application to wastewater treatment system

  • Oh, Sung-Kwun;Choi, Jae-Ho;Ahn, Tae-Chon;Hwang, Hyung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.185-188
    • /
    • 1996
  • In this paper, a fuzzy PNN algorithm is proposed to estimate the structure and parameters of fuzzy model, using the PNN based on GMDH algorithm. New algorithm uses PNN algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the leastsquare method in order to identify the optimal consequence parameters. Both time series data for gas furnace and data for wastewater treatment process are used for the purpose of evaluating the performance of the fuzzy PNN. The results show that the proposed technique can produce the fuzzy model with higher accuracy than other works achieved previously.

  • PDF

A Design of the General-Purpose Fuzzy Hardware (범용의 퍼지 하드웨어 설계)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.149-158
    • /
    • 1994
  • Recently the fuzzy control is widely used as a tool for constructing automatic control systems which can replace the manual operation of large-scale nonlinear plants. In most applications of the fuzzy control however it is hard to meet the requirement of the operation time. In some real-time control the fuzzy control scheme requires too much computing time for fuzzification inference and defuzzification. To reduce the computing time there may be two alternatives the development of a new operation algorithm and the design of high-speed fuzzy hardware. In this paper to solve the problem of reducing the fuzzy operation time we propose a new high-speed fuzzy hardware scheme which has merits of its generality and extensibility. Finally we verify the proposed fuzzy hardware.

  • PDF

A Robust Indirect Adaptive Fuzzy State Feedback Regulator Based on Takagi-Sugeno Fuzzy Model

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.554-558
    • /
    • 2002
  • In this paper, we propose a robust indirect adaptive fuzzy state feedback regulator based on Takagi-Sugeno fuzzy model. The proposed adaptive fuzzy regulator is less sensitive to singularity than the conventional one based on the feedback linearization method. Furthermore, the proposed control method is applicable to not only plants with a perfect model but also plants with an imperfect model, which causes uncertainties. We verify the global stability of the proposed method by using Lyapunov method. In order to support the achievement, the application of the proposed adaptive fuzzy regulator to the control of a nonlinear system under the external disturbance is presented and the performance was verified by some simulation result.

Fuzzy Control with Feedforward Compensator of Superheat in a Variable Speed Refrigeration System

  • Hua, Li;Lee, Dong-Woo;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.252-262
    • /
    • 2007
  • In this paper, we suggest fuzzy control with feedforward compensator of superheat to progress both energy saving and coefficient of performance(COP) in a variable speed refrigeration system. The capacity and superheat are controlled simultaneously and independently by an inverter and an electronic expansion valve respectively for saving energy and improving COP in the system. By adopting the fuzzy control. the controller design for the capacity and superheat is possible without depending on a dynamic model of the system. Moreover, the feedforward compensator of the superheat can eliminate influence of the interfering loop between capacity and superheat. Some experiments are conducted to design the appropriate fuzzy controller by an iteration manner. The results show that the proposed fuzzy controller with the compensator can establish good control performances for the complicated refrigeration system with inherent strong non-linearity.