• Title/Summary/Keyword: Fuzzy contexts

Search Result 21, Processing Time 0.027 seconds

Logic-based Fuzzy Neural Networks based on Fuzzy Granulation

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1510-1515
    • /
    • 2005
  • This paper is concerned with a Logic-based Fuzzy Neural Networks (LFNN) with the aid of fuzzy granulation. As the underlying design tool guiding the development of the proposed LFNN, we concentrate on the context-based fuzzy clustering which builds information granules in the form of linguistic contexts as well as OR fuzzy neuron which is logic-driven processing unit realizing the composition operations of T-norm and S-norm. The design process comprises several main phases such as (a) defining context fuzzy sets in the output space, (b) completing context-based fuzzy clustering in each context, (c) aggregating OR fuzzy neuron into linguistic models, and (c) optimizing connections linking information granules and fuzzy neurons in the input and output spaces. The experimental examples are tested through two-dimensional nonlinear function. The obtained results reveal that the proposed model yields better performance in comparison with conventional linguistic model and other approaches.

  • PDF

A Simultaneous Design of TSK - Linguistic Fuzzy Models with Uncertain Fuzzy Output

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.427-432
    • /
    • 2005
  • This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG predication data and coagulant dosing process in a water purification plant.

  • PDF

L-upper Approximation Operators and Join Preserving Maps

  • Kim, Yong Chan;Kim, Young Sun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.222-230
    • /
    • 2014
  • In this paper, we investigate the properties of join and meet preserving maps in complete residuated lattice using Zhang's the fuzzy complete lattice which is defined by join and meet on fuzzy posets. We define L-upper (resp. L-lower) approximation operators as a generalization of fuzzy rough sets in complete residuated lattices. Moreover, we investigate the relations between L-upper (resp. L-lower) approximation operators and L-fuzzy preorders. We study various L-fuzzy preorders on $L^X$. They are considered as an important mathematical tool for algebraic structure of fuzzy contexts.

A Design of an Improved Linguistic Model based on Information Granules (정보 입자에 근거한 개선된 언어적인 모델의 설계)

  • Han, Yun-Hee;Kwak, Keun-Chang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.76-82
    • /
    • 2010
  • In this paper, we develop Linguistic Model (LM) based on information granules as a systematic approach to generating fuzzy if-then rules from a given input-output data. The LM introduced by Pedrycz is performed by fuzzy information granulation obtained from Context-based Fuzzy Clustering(CFC). This clustering estimates clusters by preserving the homogeneity of the clustered patterns associated with the input and output data. Although the effectiveness of LM has been demonstrated in the previous works, it needs to improve in the sense of performance. Therefore, we focus on the automatic generation of linguistic contexts, addition of bias term, and the transformed form of consequent parameter to improve both approximation and generalization capability of the conventional LM. The experimental results revealed that the improved LM yielded a better performance in comparison with LM and the conventional works for automobile MPG(miles per gallon) predication and Boston housing data.

Context-Aware Security System for the Smart Phone-based M2M Service Environment

  • Lee, Hyun-Dong;Chung, Mok-Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.64-83
    • /
    • 2012
  • The number of smart phone users is rapidly growing due to recent increase in wireless Internet usage, development of a wide variety of applications, and activation of M2M (Machine to machine) services. Although the smart phone offers benefits of mobility and convenience, it also has serious security problems. To utilize M2M services in the smart phone, a flexible integrated authentication and access control facility is an essential requirement. To solve these problems, we propose a context-aware single sign-on and access control system that uses context-awareness, integrated authentication, access control, and an OSGi service platform in the smart phone environment. In addition, we recommend Fuzzy Logic and MAUT (Multi-Attribute Utility Theory) in handling diverse contexts properly as well as in determining the appropriate security level. We also propose a security system whose properties are flexible and convenient through a typical scenario in the smart phone environment. The proposed context-aware security system can provide a flexible, secure and seamless security service by adopting diverse contexts in the smart phone environment.

Design of Genetically Optimized Context-based RBFNN (진화론적으로 최적화된 Context-based RBF 뉴럴 네트워크 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.258-260
    • /
    • 2009
  • 본 논문에서는 최적화 알고리즘인 유전자 알고리즘과 context-based FCM 클러스터링 방법을 이용하여 새로운 형태의 RBF 뉴럴 네트워크의 포괄적인 설계 방법론을 소개한다. 제안된 구조는 클러스터링 기법을 기반하여 사용된 데이터의 특성에 효과적인 모델을 구축하고자 한다. 또한 유전자 알고리즘을 이용하여 모델의 최적화에 주요한 영향을 미치는 파리미터들(-은닉층에서의 contex의 수, contex에 포괄되는 노드의 수, 그리고 contex에 입력되는 입력변수)을 동조한다. 제안된 모델의 설계 공정은 1) K-means 클러스터링을 통한 context fuzzy set에 대한 정의와 설계, 2) context-based fuzzy clustering에 대한 모델의 적용과 이에 따른 모델 구축의 효율성, 3) 유전자 알고리즘을 통한 모델 최적화를 위한 파라미터들의 최적화와 같은 단계로 구성되어 있다. 구축된 RBF 뉴럴 네트워크의 후반부 다항식에 대한 parameter들은 성능지수를 최소화하기 위해 Least Square Method에 의해서 보정된다. 본 논문에서는 모델을 설계함에 있어서 체계적인 설계 알고리즘을 포괄적으로 설명하고 있으며, 더 나아가 제안된 모델의 성능을 다른 표준적인 모델들과 대조함으로써 제안된 모델의 우수성을 나타내고자 한다.

  • PDF

A new Design of Granular-oriented Self-organizing Polynomial Neural Networks (입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

Fuzzy Colored Timed Petri Nets for Context Inference (상황 추론을 위한 Fuzzy Colored Timed Petri Net)

  • Lee Keon-Myung;Lee Kyung-Mi;Hwang Kyung-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.291-296
    • /
    • 2006
  • In context-aware computing environment, some context is characterized by a single event, but many other contexts are determined by a sequence of events which happen with some timing constraints. Therefore context inference could be conducted by monitoring the sequence of event occurrence along with checking their conformance with timing constraints. Some context could be described with fuzzy concepts instead of concrete concepts. Multiple entities may interact with a service system in the context-aware environments, and thus the context inference mechanism should be equipped to handle multiple entities in the same situation. This paper proposes a context inference model which is based on the so-called fuzzy colored timed Petri net. The model represents and handles the sequential occurrence of some events along with involving timing constraints, deals with the multiple entities using the colored Petri net model, and employs the concept of fuzzy tokens to manage the fuzzy concepts.

Improved Post-Filtering Method Using Context Compensation

  • Kim, Be-Deu-Ro;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.119-124
    • /
    • 2016
  • According to the expansion of smartphone penetration and development of wearable device, personal context information can be easily collected. To use this information, the context aware recommender system has been actively studied. The key issue in this field is how to deal with the context information, as users are influenced by different contexts while rating items. But measuring the similarity among contexts is not a trivial task. To solve this problem, we propose context aware post-filtering to apply the context compensation. To be specific, we calculate the compensation for different context information by measuring their average. After reflecting the compensation of the rating data, the mechanism recommends the items to the user. Based on the item recommendation list, we recover the rating score considering the context information. To verify the effectiveness of the proposed method, we use the real movie rating dataset. Experimental evaluation shows that our proposed method outperforms several state-of-the-art approaches.

A Model for diagnosing Students′Misconception using Fuzzy Cognitive Maps and Fuzzy Associative Memory (퍼지 인지 맵과 퍼지 연상 메모리를 이용한 오인진단 모델)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This paper presents a model for diagnosing students'learning misconceptions in the domain of heat and temperature using fuzzy cognitive maps(FCM) and fuzzy associative memory(FAM). In a model for diagnosing learning misconceptions. an FCM can represent with cause and effect between preconceptions and misconceptions that students have about scientific phenomenon. An FAM which represents a neurallike memory for memorizing causal relationships is used to diagnose causes of misconceptions in learning. This study will present a new method for more autonomous and intelligent system than a model to diagnose misconceptions that was being done with classical methods in learning and may contribute as an intelligent tutoring system for learning diagnosis within various educational contexts.

  • PDF