• 제목/요약/키워드: Fuzzy c-means Clustering Method

검색결과 180건 처리시간 0.03초

정보 Granules에 의한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계 (Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems with Information Granulation)

  • 박건준;안태천;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.81-86
    • /
    • 2005
  • 본 연구에서는 복잡하고 비선형 시스템을 모델 동정하기 위해 정보 granules에 기반한 퍼지 추론 시스템의 새로운 범주를 소개한다. 비공식적으로 말하면, 정보 granules는 근접성, 유사성 또는 기능성 등에 인하여 서로 결합되는 대상(특히, 수치 데이터)의 연결된 모임으로 간주된다. HCM 클러스터링에 의한 정보 granulation은 퍼지 규칙의 전반부 및 후반부에서 사용되는 멤버쉽 함수의 포기 정점과 다항식함수의 초기 값과 같은 퍼지 모델의 초기 파라미터를 결정하는데 도움을 준다. 그리고 포기 파라미터는 유전자 알고리즘과 최소자승법에 의해 효과적으로 동조된다. 또한, 퍼지 모델의 성능사이의 상호균형을 얻기 위하여 하중값을 가진 합성 목적함수를 사용하여 근사화와 예측성능의 향상을 꾀한다. 제안된 모델은 수치적인 예제를 가지고 평가하고, 문헌에서 나타난 기존의 퍼지 모델의 성능과 대조된다.

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

Al 기법을 이용한 차량 정보 수집 장비 개발 (The Development of the Vehicles Information Detector)

  • 문학룡;류숭기;김영춘;변상철;최도혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1283-1285
    • /
    • 2002
  • This study is developed vehicle information detector using loop and piezo sensors. This study would analyze the over all problems concerning our road conditions, environmental matters and unique features of our traffic matters; moreover, with these it would develope the hardware, software, car classification algorithm applied by artificial intelligence and traffic monitoring program which can be easily fixed. This can be divided into traffic detecting algorithm and car classification algorithm. Especially, we have developed the car classification algorithm used by C-means Fuzzy Clustering method.

  • PDF

방사형 기저 함수 기반 다항식 뉴럴네트워크 설계 (Design of RBF-based Polynomial Neural Network)

  • 김기상;진용하;오성권;김현기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.261-263
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 각 노드의 후반부 파라미터들은 최소자승법을 이용하여 최적화 하였다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF

Performance Improvement of Fuzzy C-Means Clustering Algorithm by Optimized Early Stopping for Inhomogeneous Datasets

  • Chae-Rim Han;Sun-Jin Lee;Il-Gu Lee
    • Journal of information and communication convergence engineering
    • /
    • 제21권3호
    • /
    • pp.198-207
    • /
    • 2023
  • Responding to changes in artificial intelligence models and the data environment is crucial for increasing data-learning accuracy and inference stability of industrial applications. A learning model that is overfitted to specific training data leads to poor learning performance and a deterioration in flexibility. Therefore, an early stopping technique is used to stop learning at an appropriate time. However, this technique does not consider the homogeneity and independence of the data collected by heterogeneous nodes in a differential network environment, thus resulting in low learning accuracy and degradation of system performance. In this study, the generalization performance of neural networks is maximized, whereas the effect of the homogeneity of datasets is minimized by achieving an accuracy of 99.7%. This corresponds to a decrease in delay time by a factor of 2.33 and improvement in performance by a factor of 2.5 compared with the conventional method.

피라미드 영상과 퍼지이론을 이용한 폐부 혈관의 검출에 관한 연구 (A Study on the Detection of Pulmonary Blood Vessel Using Pyramid Images and Fuzzy Theory)

  • 황준현;박광석;민병구
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권2호
    • /
    • pp.99-106
    • /
    • 1991
  • For the automatic detection of pulmonary blood vessels, a new algorithm is proposed using the fact that human recognizes a pattern orderly according to their size. This method simulates the human recognition process by the pyramid images. For the detection of vessels using multilevel image, large and wtde ones are detected from the most compressed level, followed by the detection of small and narrow ones from the less compressed images with FCM(fuzzy c means) clustering algorithm which classifies similar data into a group. As the proposed algorithm detects blood vessels orderly according to their size, there is no need to consider the variation of parameters and the branch points which should be considered in other detection algirithms. In the detection of patterns whose size changes successively like pulmonary blood vessels, this proposed algorithm can be properly applied

  • PDF

WLAN 실내 측위 결정을 위한 KNN/PFCM Hybrid 알고리즘 (KNN/PFCM Hybrid Algorithm for Indoor Location Determination in WLAN)

  • 이장재;정민아;이성로
    • 대한전자공학회논문지SP
    • /
    • 제47권6호
    • /
    • pp.146-153
    • /
    • 2010
  • 무선 네트워크 기반 실내 측위는 측위를 위한 특수 장비를 필요로 하지 않고, Fingerprinting 방식은 무선 네트워크 기반 측위를 위한 기술 중에서 가장 정확도가 높기 때문에 무선 네트워크 Fingerprinting 방식이 가장 적당한 실내 측위 방법이다. Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은k개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 PFCM 군집화를 적용한 KNN과 PFCM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 PFCM에 적용하여k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/PFCM 알고리즘이 KNN과 KNN/FCM 알고리즘보다 성능이 우수하다.

효율적인 실내 측위를 위한 최적화된 KNN/IFCM 알고리즘 (Optimized KNN/IFCM Algorithm for Efficient Indoor Location)

  • 이장재;송익호;김종화;이성로
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.125-133
    • /
    • 2011
  • WLAN 환경하에서 알고리즘 기반의 패턴 매칭을 위해 training 단계에서는 여러 개의 AP에서 신호 잡음비의 특성값을 데이터베이스에 만들어 활용하고 estimation 단계에서는 단말기(MU)의 2차원 좌표값을 단말기로부터 새롭게 얻은 SNR과 데이터베이스에 저장된 fingerprint을 비교함으로써 추정한다. Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은 k 개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 PFCM 군집화를 적용한 KNN과 PFCM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 PFCM에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/IFCM 알고리즘이 KNN, KNN/FCM, KNN/PFCM 알고리즘보다 성능이 우수하다.

Quality monitoring of complex manufacturing systems on the basis of model driven approach

  • Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.495-506
    • /
    • 2020
  • Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.

Recognition of Radar Emitter Signals Based on SVD and AF Main Ridge Slice

  • Guo, Qiang;Nan, Pulong;Zhang, Xiaoyu;Zhao, Yuning;Wan, Jian
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.491-498
    • /
    • 2015
  • Recognition of radar emitter signals is one of core elements in radar reconnaissance systems. A novel method based on singular value decomposition (SVD) and the main ridge slice of ambiguity function (AF) is presented for attaining a higher correct recognition rate of radar emitter signals in case of low signal-to-noise ratio. This method calculates the AF of the sorted signal and ascertains the main ridge slice envelope. To improve the recognition performance, SVD is employed to eliminate the influence of noise on the main ridge slice envelope. The rotation angle and symmetric Holder coefficients of the main ridge slice envelope are extracted as the elements of the feature vector. And kernel fuzzy c-means clustering is adopted to analyze the feature vector and classify different types of radar signals. Simulation results indicate that the feature vector extracted by the proposed method has satisfactory aggregation within class, separability between classes, and stability. Compared to existing methods, the proposed feature recognition method can achieve a higher correct recognition rate.