• Title/Summary/Keyword: Fuzzy and Neural Network

Search Result 1,169, Processing Time 0.031 seconds

Neural-Fuzzy Controller Design for the Azimuth and Velocity Control of a Track Vehicle (궤도차량의 속도 및 자세 제어를 위한 뉴럴-퍼지 제어기 설계)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.68-75
    • /
    • 1997
  • This paper presents a new approach to the design of neural-fuzzy controller for the speed and azimuth control of a track vehicle. The proposed control scheme uses a Gaussian function as a unit function in the frzzy-neural network, and back propagaton algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a track vehicle driven by two independent wheels.

  • PDF

Using Fuzzy Neural Network to Assess Network Video Quality

  • Shi, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2377-2389
    • /
    • 2022
  • At present people have higher and higher requirements for network video quality, but video quality will be impaired by various factors, so video quality assessment has become more and more important. This paper focuses on the video quality assessment method using different fuzzy neural networks. Firstly, the main factors that impair the video quality are introduced, such as unit time jamming times, average pause time, blur degree and block effect. Secondly, two fuzzy neural network models are used to build the objective assessment method. By adjusting the network structure to optimize the assessment model, the objective assessment value of video quality is obtained. Meanwhile the advantages and disadvantages of the two models are analysed. Lastly, the proposed method is compared with many recent related assessment methods. This paper will give the experimental results and the detail of assessment process.

Face Recognition Based on Improved Fuzzy RBF Neural Network for Smar t Device

  • Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1338-1347
    • /
    • 2013
  • Face recognition is a science of automatically identifying individuals based their unique facial features. In order to avoid overfitting and reduce the computational reduce the computational burden, a new face recognition algorithm using PCA-fisher linear discriminant (PCA-FLD) and fuzzy radial basis function neural network (RBFNN) is proposed in this paper. First, face features are extracted by the principal component analysis (PCA) method. Then, the extracted features are further processed by the Fisher's linear discriminant technique to acquire lower-dimensional discriminant patterns, the processed features will be considered as the input of the fuzzy RBFNN. As a widely applied algorithm in fuzzy RBF neural network, BP learning algorithm has the low rate of convergence, therefore, an improved learning algorithm based on Levenberg-Marquart (L-M) for fuzzy RBF neural network is introduced in this paper, which combined the Gradient Descent algorithm with the Gauss-Newton algorithm. Experimental results on the ORL face database demonstrate that the proposed algorithm has satisfactory performance and high recognition rate.

Damage Assessment of RC Bridge Using Neural-Fuzzy System (퍼지신경망을 이용한 철근콘크리트 교량의 손상도 평가)

  • Seong, Young-Joon;Kim, Ki- Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.129-137
    • /
    • 1999
  • Assessment of structural damage is a complex subject imbued with uncertainty and vagueness. This complexity arises from the use of subjective opinion and imprecise numerical data. Recently several active researches have been performed using new methods such as neural network approach or on-line damage detection. In this paper, Damage assessment (diagnosis) of the concrete bridges is studied by a new approach utilizing a neural fuzzy system that combined a neural network and a fuzzy logic. By applying this system to actual in-service bridges, it has been verified that the neural fuzzy method is effective for the bridge diagnosis.

  • PDF

A Study on Induction Motor Speed Control Using Fuzzy-Neural Network (퍼지-뉴럴 제어기를 이용한 유도전동기 속도제어)

  • Kim, Sei-Chan;Kim, Hak-Sung;Ryoo, Hong-Je;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.251-254
    • /
    • 1995
  • The Fuzzy-Neural Controller is constructed to resolve some dificulties taking place in decision of membership functions, input and output gains and an inferenced method for desinging fuzzy logic controller. In addition Neural network emulator is used to emulate induction motor forward dynamics and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. A back propagation algorithm is used to train fuzzy-neural controller and emulator. The experimental results show that this control system can provide good dynamical responses.

  • PDF

Construct of Fuzzy Inference Network based on the Neural Logic Network (신경 논리 망을 기반으로 한 퍼지 추론 망 구성)

  • 이말례
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Fuzzy logic ignores some information in the reasoning process. Neural network is powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule-inference network. And the traditional propagation rule is modified. Experiments are performed to compare search costs by sequential searching and searching by priority. The experimental results show that the searching by priority is more efficient than the sequential searching as the size of the fuzzy inference network becomes larder and an the number of searching increases.

  • PDF

Automatic Control of Coagulant Dosing Rate Using Self-Organizing Fuzzy Neural Network (자기조직형 Fuzzy Neural Network에 의한 응집제 투입률 자동제어)

  • 오석영;변두균
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1100-1106
    • /
    • 2004
  • In this report, a self-organizing fuzzy neural network is proposed to control chemical feeding, which is one of the most important problems in water treatment process. In the case of the learning according to raw water quality, the self-organizing fuzzy network, which can be driven by plant operator, is very effective, Simulation results of the proposed method using the data of water treatment plant show good performance. This algorithm is included to chemical feeder, which is composed of PLC, magnetic flow-meter and control valve, so the intelligent control of chemical feeding is realized.

Genetically Optimized Fuzzy Polynomial Neural Network and Its Application to Multi-variable Software Process

  • Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki;Pedrycz Witold
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The conventional FPNN developed so far are based on mechanisms of self-organization and evolutionary optimization. The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed advanced genetic algorithms based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

A Speed Control of Switched Reluctance Motor using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 스위치드 리럭턴스 전동기의 속도제어)

  • 박지호;김연충;원충연;김창림;최경호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.109-119
    • /
    • 1999
  • Switched Reluctance Motor(SRM) have been expanding gradually their awlications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. In this paper neural network theory is used to detemrine fuzzy-neural network controller's membership ftmctions and fuzzy rules. In addition neural network emulator is used to emulate forward dynamics of SRM and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. The backpropagated error of emulator offers the path which reforms the fuzzy-neural network controller's mmbership ftmctions and fuzzy rules. 32bit Digital Signal Processor(TMS320C31) was used to achieve the high speed control and to realize the fuzzy-neural control algorithm. Simulation and experimental results show that in the case of load variation the proposed control rrethcd was superior to a conventional rrethod in the respect of speed response.sponse.

  • PDF

The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System (유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용)

  • 최재호;오성권;안태천;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF