• Title/Summary/Keyword: Fuzzy Tuning

Search Result 442, Processing Time 0.029 seconds

Active Vibration Control of a Cantilever Beam Using Fuzzy Control Scheme and PID Controller (퍼지 기법과 PID 제어기를 이용한 외팔보의 능동 진동 제어)

  • 최수영;김진태;박기헌
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper is concerned with the fuzzy control scheme and PID controller for the vibration suppression control of a cantilever beam equipped with a laser sensor and an electromagnetic actuator. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriate PID gains in nonlinear systems and systems with time variant characteristic and so on. In this paper, we design the fuzzy based PID controller of which output gains are adjusted automatically and the designed controller is applied to active vibration control of a cantilever beam using electromagnetic actuator with strong nonlinearity. The tuning PID parameters of proposed controller are determined by using Fuzzy algorithm. Effectiveness and performance of the designed controller are verified by both simulation and experiment results. Experimental results demonstrate that better control performance can be achieved in comparison with the PID cotroller.

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.51-59
    • /
    • 2019
  • Due to the exponential growth of access information on the web, the need for predicting web users' next access has increased. Various models such as markov models, deep neural networks, support vector machines, and fuzzy inference models were proposed to handle web access prediction. For deep learning based on neural network models, training time on large-scale web usage data is very huge. To address this problem, deep neural network models are trained on cluster of computers in parallel. In this paper, we investigated impact of several important spark parameters related to data partitions, shuffling, compression, and locality (basic spark parameters) for training Multi-Layer Perceptron model on Spark standalone cluster. Then based on the investigation, we tuned basic spark parameters for training Multi-Layer Perceptron model and used it for tuning Spark when training Multi-Layer Perceptron model for web access prediction. Through experiments, we showed the accuracy of web access prediction based on our proposed web access prediction model. In addition, we also showed performance improvement in training time based on our spark basic parameters tuning for training Multi-Layer Perceptron model over default spark parameters configuration.

A Study on Identification of Optimal Fuzzy Model Using Genetic Algorithm (유전알고리즘을 이용한 최적 퍼지모델의 동정에 관한연구)

  • 김기열
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2000
  • A identification algorithm that finds optimal fuzzy membership functions and rule base to fuzzy model isproposed and a fuzzy controller is designed to get more accurate position and velocity control of wheeled mobile robot. This procedure that is composed of three steps has its own unique process at each step. The elements of output term set are increased at first step and then the rule base is varied according to increase of the elements. The adjusted system is in competition with system which doesn't include any increased elements. The adjusted system will be removed if the system lost. Otherwise, the control system is replaced with the adjusted system. After finished regulation of output term set and rule base, searching for input membership functions is processed with constraints and fine tuning of output membership functions is done.

  • PDF

Genetically Optimized Neurofuzzy Networks: Analysis and Design (진화론적 최적 뉴로퍼지 네트워크: 해석과 설계)

  • 박병준;김현기;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.561-570
    • /
    • 2004
  • In this paper, new architectures and comprehensive design methodologies of Genetic Algorithms(GAs) based Genetically optimized Neurofuzzy Networks(GoNFN) are introduced, and a series of numeric experiments are carried out. The proposed GoNFN is based on the rule-based Neurofuzzy Networks(NFN) with the extended structure of the premise and the consequence parts of fuzzy rules being formed within the networks. The premise part of the fuzzy rules are designed by using space partitioning in terms of fuzzy sets defined in individual variables. In the consequence part of the fuzzy rules, three different forms of the regression polynomials such as constant, linear and quadratic are taken into consideration. The structure and parameters of the proposed GoNFN are optimized by GAs. GAs being a global optimization technique determines optimal parameters in a vast search space. But it cannot effectively avoid a large amount of time-consuming iteration because GAs finds optimal parameters by using a given space. To alleviate the problems, the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. In a nutshell, the objective of this study is to develop a general design methodology o GAs-based GoNFN modeling, come up a logic-based structure of such model and propose a comprehensive evolutionary development environment in which the optimization of the model can be efficiently carried out both at the structural as well as parametric level for overall optimization by utilizing the separate or consecutive tuning technology. To evaluate the performance of the proposed GoNFN, the models are experimented with the use of several representative numerical examples.

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Intelligent Washing Machine: A Bioinspired and Multi-objective Approach

  • Milasi, Rasoul Mohammadi;Jamali, Mohammad Reza;Lucas, Caro
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.436-443
    • /
    • 2007
  • In this paper, an intelligent method called BELBIC (Brain Emotional Learning Based Intelligent Controller) is used to control of Locally Linear Neuro-Fuzzy Model (LOLIMOT) of Washing Machine. The Locally Linear Neuro-Fuzzy Model of Washing Machine is obtained based on previously extracted data. One of the important issues in using BELBIC is its parameters setting. On the other hand, the controller design for Washing Machine is a multi objective problem. Indeed, the two objectives, energy consumption and effectiveness of washing process, are main issues in this problem, and these two objectives are in contrast. Due to these challenges, a Multi Objective Genetic Algorithm is used for tuning the BELBIC parameters. The algorithm provides a set of non-dominated set points rather than a single point, so the designer has the advantage of selecting the desired set point. With considering the proper parameters after using additional assumptions, the simulation results show that this controller with optimal parameters has very good performance and considerable saving in energy consumption.

NN Saturation and FL Deadzone Compensation of Robot Systems (로봇 시스템의 신경망 포화 및 퍼지 데드존 보상)

  • Jang, Jun-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.187-192
    • /
    • 2008
  • A saturation and deadzone compensator is designed for robot systems using fuzzy logic (FL) and neural network (NN). The classification property of FL system and the function approximation ability of the NN make them the natural candidate for the rejection of errors induced by the saturation and deadzone. The tuning algorithms are given for the fuzzy logic parameters and the NN weights, so that the saturation and deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The NN saturation and FL deadzone compensator is simulated on a robot system to show its efficacy.

  • PDF

A Case Study of Human Resource Allocation for Effective Hotel Management

  • Murakami, Kayoko;Tasan, Seren Ozmehmet;Gen, Mitsuo;Oyabu, Takashi
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.54-64
    • /
    • 2011
  • The purpose of this study is to optimally allocate the human resources to tasks while minimizing the total daily human resource costs and smoothing the human resource usage. The human resource allocation problem (hRAP) under consideration contains two kinds of special constraints, i.e. operational precedence and skill constraints in addition to the ordinary constraints. To deal with the multiple objectives and the special constraints, first we designed this hRAP as a network problem and then proposed a Pareto multistage decisionbased genetic algorithm (P-mdGA). During the evolutionary process of P-mdGA, a Pareto evaluation procedure called generalized Pareto-based scale-independent fitness function approach is used to evaluate the solutions. Additionally, in order to improve the performance of P-mdGA, we use fuzzy logic controller for fine-tuning of genetic parameters. Finally, in order to demonstrate the applicability and to evaluate the performance of the proposed approach, P-mdGA is applied to solve a case study in a hotel, where the managers usually need helpful automatic support for effectively allocating hotel staff to hotel tasks.

Performance Improvement of Controller using Fuzzy Inference Results of System Output (시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선)

  • 이우영;최홍문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.77-86
    • /
    • 1995
  • The new architecture that fuzzy logic control(FLC) with difficulties for tuning membership function (MF) is parallel with neural networks(NN) to be learned from the output of FLC is proposed. Therefore proposed scheme has the characteristics to utilize the expert knowledge in design process, to be learned during the operation without any learning mode. In this architecture, the function of the FLC is to supply the sliding surface which is constructed on the phase plane by rule base for giving the desired control characteristics and learning criterion of NN and the stabilization of the control performance before NN is learned, The function of the NN is to let the system trajectory be tracked to the sliding surface and reached to the stable point.

  • PDF

Design of Fuzzy Power System Stabilizer using Real-coding Genetic Algorithm (실수형 유전알고리즘을 이용한 전력계통 퍼지안정화장치의 설계)

  • Lee, Jong-Kyu;Kwon, Soon-Il;Kim, Sung-Shin;Park, June-Ho;Hwang, Gi-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.134-136
    • /
    • 2001
  • This paper describes the application of Fuzzy Power System Stabilizer(FPSS) for improving dynamic stability of power system. The Real-coding Genetic Algorithm(RGA) was applied to optimize gains of the inputs and outputs of the FPSS. The effectiveness of the proposed FPSS was demonstrated by simulation studies for single-machine infinite system. To show the superiority of the proposed FPSS, its performances were compared with those of Conventional Power System Stabilizer(CPSS) The proposed FPSS showed better control performances than the CPSS in three-phase ground fault under a normal load which was system condition in tuning FPSS. To show the robustness of the proposed FPSS, it was applied to damp the low frequency oscillations caused by disturbances such as three-phase ground fault under heavy and light load conditions. The proposed FPSS showed better performance than CPSS in terms of the settling time and damping effect for power system operation condition.

  • PDF