• 제목/요약/키워드: Fuzzy Reasoning Rules

검색결과 111건 처리시간 0.032초

퍼지뉴럴 시스템을 위한 초기 입력공간분할의 최적화 : Measure of Fuzziness (The Optimal Partition of Initial Input Space for Fuzzy Neural System : Measure of Fuzziness)

  • 백덕수;박인규
    • 대한전자공학회논문지TE
    • /
    • 제39권3호
    • /
    • pp.97-104
    • /
    • 2002
  • 이 논문에서는 퍼지뉴럴 시스템을 위하여 measure of fuzziness에 의한 입력공간의 분할을 최적화하는 방법을 제안한다. 이에 따라 최적화된 퍼지 부공간에 대하여 퍼지 제어규칙을 자동으로 생성하는 방법을 제안한다. 또한 시계열 예측 문제에서 입력패턴의 간격을 조정하여 그 성능을 검증한다. 이 방법은 샤논 함수와 index of fuzziness를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 입력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안된 알고리즘을 토대로 여덟 가지의 입력패턴에 대하여 추론한 결과 입력공간의 최적분할에 의하여 수렴과정에서 초기에 오차(RMSE)가 빠르게 수렴함을 알 수 있었다.

퍼지규칙의 신경망 학습을 통한 스케치 특징점 추출 (Sketch Feature Extraction Through Learning Fuzzy Inference Rules with a Neural Network)

  • 조성목
    • 한국정보처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.1066-1073
    • /
    • 1998
  • 본 논문에서는 신경회로망을 사용하여 영상에 존재하는 스케치 특징점을 효과적으로 추출할 수 있는 퍼지규칙을 발생시킨다. 이를 위한 퍼지 입력변수로 DBAH(difference between arithmetic mean and harmonic mean)오 특징점정도가 정의된다. DBAH는 국부 밝기를 반영하는 특성을 가지며, 매우 어두운 영역에서의 작은 밝기변화에서는 낮은 출력을 나타내는 장점을 가진다. 퍼지규칙의 신경망학습을 통한 스케치 특징점을 추출은 특징점 추출을 위한 퍼지규칙의 설정에 효과적인 방법이 될 수 있음이 증명된다.

  • PDF

GMDH 방법에 의한 FPNN 일고리즘과 폐스처리공정에의 응용 (Fuzzy Polynomial Neural Network Algorithm using GMDH Mehtod and its Application to the Wastewater Treatment Process)

  • 오성권;황형수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.96-105
    • /
    • 1997
  • 본 논문에서는 복잡한 비선형 시스템의 모델동정을 위해 퍼지모델링의 새로운 방법이 제안된다. 제안된 FPNN모델링은 공정시스템의 입출력 데이터로부터 GMDH방법과 퍼지구현규칙을 이용하여 시스템의 구조와 파라미터 동정을 구현한다. 퍼지구현규칙의 전반부 구조와 파라미터 동정을 위하여 GMDH 방법과 희귀다항식 퍼지추론 방법이 사용되고 최적 후반부 파라미터 동정을 위하여 최소자승법이 사용된다. 가스로 시계열데이타 및 하수처리시스템의 활성화의 공정 데이터가 제안한 FPNN 모델링의 성능을 평가하기 위해 상용된다. 제안된 방법이 기존의 다른 논문과 비교하여 더 높은 정확도를 가진 지능형 모델을 생성함을 보인다.

  • PDF

Electrical Fire Cause Diagnosis System based on Fuzzy Inference

  • Lee, Jong-Ho;Kim, Doo-Hyun
    • International Journal of Safety
    • /
    • 제4권2호
    • /
    • pp.12-17
    • /
    • 2005
  • This paper aims at the development of an knowledge base for an electrical fire cause diagnosis system using the entity relation database. The relation database which provides a very simple but powerful way of representing data is widely used. The system focused on database construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. In order to store and access to the information concerned with electrical fires, the key index items which identify electrical fires uniquely are derived out. The knowledge base consists of a case base which contains information from the past fires and a rule base with rules from expertise. To implement the knowledge base, Access 2000, one of DB development tools under windows environment and Visual Basic 6.0 are used as a DB building tool. For the reasoning technique, a mixed reasoning approach of a case based inference and a rule based inference has been adopted. Knowledge-based reasoning could present the cause of a newly occurred fire to be diagnosed by searching the knowledge base for reasonable matching. The knowledge-based database has not only searching functions with multiple attributes by using the collected various information(such as fire evidence, structure, and weather of a fire scene), but also more improved diagnosis functions which can be easily wed for the electrical fire cause diagnosis system.

비선형 모델링에 대한 새로운 뉴로-퍼지 네트워크 연구 (A study on the novel Neuro-fuzzy network for nonlinear modeling)

  • 김동원;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.791-793
    • /
    • 2000
  • The fuzzy inference system is a popular computing framework based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The advantage of fuzzy approach over traditional ones lies on the fact that fuzzy system does not require a detail mathematical description of the system while modeling. As modeling method. the Group Method of Data Handling(GMDH) is introduced by A.G. Ivakhnenko GMDH is an analysis technique for identifying nonlinear relationships between system's inputs and output. We study a Novel Neuro-Fuzzy Network (NNFN) in this paper. NNFN is a network resulting from the combination of a fuzzy inference system and polynomial neural network(PNN) (7) which is advanced structure of GMDH. Simulation involve a series of synthetic as well as experimental data used across various neurofuzzy systems.

  • PDF

펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크 (Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function)

  • 김동원;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.15-15
    • /
    • 2000
  • In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.

  • PDF

WEB 기반 교통안전 시스템 (Traffic Safety System based on WEB)

  • 박천관;박현숙;홍유식
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.81-88
    • /
    • 2014
  • 요즈음 교통사고를 줄이기 위하여 IT 기술을 이용한 교통사고 연구가 많이 진행되고 있다. 특히, 고속도로에서 교통사고를 예방하기 위해서 눈이나 비가 올 경우에는, 날씨조건을 고려한 최적의 교통속도를 실시간으로 산출해야한다. 본 논문에서는 교통사고를 예방하기 위하여 결빙 구간 및 안개구간 자동 경고 안내 방송 시스템을 웹기반에서 모의실험 하였다. 뿐만 아니라, 퍼지 추론 규칙을 이용하여서, 최악의 날씨 조건에서도 교통사고를 예방 할 수 있도록, 운전자 에게 최적의 교통 안전속도를 실시간으로 운전자에게 알려 주는 모의실험을 개발하였다.

Fuzzy Belief Network : 가능성을 이용한 근사추론 시스템 (Fuzzy Belief Network : Approximate Reasoning System Using The Possiblity)

  • 조상엽;김기태
    • 인지과학
    • /
    • 제4권1호
    • /
    • pp.261-294
    • /
    • 1993
  • 대부분의 규칙 기반 전문가 시스템에서 규칙의 갱신과 새로운 규칙의 추가가 다른 규칙에 영향을 주어서는 안된다. 이러한 원리를 규칙의 모듈성이라고 한다. 전문가 시스템에서 증거간의 관계를 알려고 할때, 기존의 전문가 시스템은 정보의 근원이 다른것으로 가정하고 믿음값을 갱신한다. 이러한 가정은 규칙의 모듈성을 위반하게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해 규칙의 모듈성을 보장하는 베이지안 네트워크에 기반을 둔 Fuzzy Belief Network 를 제안한다. Fuzzy Belief Network을 구축하기 위해 노드와 링크 등을 정의하고, 각 노드에서 발생하는 자료의 융합 알고리즘과 자료를 융합한 결과인 믿음값을 모든 노드에 전달하는 확산 알고리즘을 제안한다.

Fuzzy polynomial neural network model and its application to wastewater treatment system

  • Oh, Sung-Kwun;Choi, Jae-Ho;Ahn, Tae-Chon;Hwang, Hyung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.185-188
    • /
    • 1996
  • In this paper, a fuzzy PNN algorithm is proposed to estimate the structure and parameters of fuzzy model, using the PNN based on GMDH algorithm. New algorithm uses PNN algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the leastsquare method in order to identify the optimal consequence parameters. Both time series data for gas furnace and data for wastewater treatment process are used for the purpose of evaluating the performance of the fuzzy PNN. The results show that the proposed technique can produce the fuzzy model with higher accuracy than other works achieved previously.

  • PDF

퍼지 보상을 이용한 로봇 매니퓰레이터의 위치/힘제어 (Position/Force Control of Robotic Manipulator with Fuzzy Compensation)

  • 심귀보
    • 한국지능시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.36-51
    • /
    • 1995
  • An approach to robot hybrid position/force control, which allows force manipulations to be realized without overshoot and overdamping while in the presence of unknown environment, is given in this paper. The manin idea is to used dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify the unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resovled acceleration control method, dynamic compensation and PD control based on known robot dynamics, kinematics and estimated environment stiffness is introduced. To avoid overshoot the whole control system is constructed with overdamping. In the second stage, the unknown environment stiffness is identified by using fuzzy reasoning, where the fuzzy compensation rules are obtained priori as the expression of the relationship betweenenvironment stiffness and system. Based on the simulation result, comparison between cases with or without fuzzy identifications are given, which illustrate the improvement achieced.

  • PDF