• Title/Summary/Keyword: Fuzzy Reasoning

Search Result 391, Processing Time 0.037 seconds

A Study on Performance Assessment Methods by Using Fuzzy Membership Function and Fuzzy Reasoning

  • Je, Sung-kwan;Jang, Hye-Won;Shin, Bok-Suk;Kim, Cheol-Ki;Jaehyun Cho;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.608-611
    • /
    • 2003
  • Performance assessment was introduced to improvement of self-directed learning and method of assessment for differenced learning as the seventh educational curriculum is enforced. Performance assessment is overcoming limitation about problem solving ability and higher thinking abilities assessment that is problem of a written examination and get into the spotlight by way for quality of class and school normalization. But performance assessment has problems about possibilities of assessment fault by appraisal, fairness, reliability, and validity of grading, ambiguity of grading standard, difficulty about objectivity security etc. This study proposes fuzzy performance assessment system to solve problem of the conventional performance assessment. This paper presented an objective and reliable performance assessment method through fuzzy reasoning, design fuzzy membership function and define fuzzy rule analyzing factor that influence in each sacred ground of performance assessment to account principle subject. Also, performance assessment item divides by formation estimation and subject estimation and designed membership function in proposed performance assessment method. Performance assessment result that is worked through fuzzy performance assessment system can pare down burden about appraisal's fault and provide fair and reliable assessment result through grading that have correct standard and consistency to students.

  • PDF

A Study on Reasoning and Learning of Fuzzy Rules Using Neural Networks (신경회로망을 이용한 퍼지룰의 추론과 학습에 관한 연구)

  • 이계호;임영철;김이곤;조경영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.2
    • /
    • pp.231-238
    • /
    • 1993
  • A rules of fuzzy control is to represent an expert‘s and engineer‘s ambiguous control knowledge of system with some lingustic rules. This rule is very difficult to represent perfectly because expert‘s knowledge is not precise and the rule is not perfect. We propose the fuzzy reasoning and learning to upgrade precision of imperfect rules successively after system running. In the proposed method, the precision of the backward part of a fuzzy rule is improved by back propagation learning method. Also, the method reasons the compatibility degree of the forward part of fuzzy rule by associative memory method. This method this is successfully applied to design auto-parking fuzzy controller in which expert‘s technology and knowledge are required in the limited area.

  • PDF

A Formal Specification of Fuzzy Object Inference Model for Supporting Disjunctive Fuzzy Information (이접적 퍼지 정보를 지원하는 퍼지 객체 추론 모델의 정형화)

  • 양형정;양재동
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.184-197
    • /
    • 2001
  • In this paper, we provide the formal specification of a fuzzy object inference language and propose ICOT(Integrated C-Object Tool) as its implementation for knowledge-based programming with the disjunctive fuzzy information. The novelty of our model is that it seamlessly combines object inference and fuzzy reasoning into a unified framework without compromising a compatibility with extant databases, especially object-relational ones. In this model most of the object-oriented paradigm is successfully expressed in terms of relational constructs, tailoring fuzzy reasoning style to be well suited to the framework of the databases. It turns out to be useful in preserving its conceptual simplicity as well, since simple-to-use is one of important criteria in designing the databases. Additionally this model considerably enhanced the semantic expressiveness of data allowing disjunctive fuzzy information.

  • PDF

Fuzzy PID Controller Design for Tracking Control (퍼지PID제어를 이용한 추종 제어기 설계)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

Fuzzy Cognitive Map and Bayesian Belief Network for Causal Knowledge Engineering: A Comparative Study (인과관계 지식 모델링을 위한 퍼지인식도와 베이지안 신뢰 네트워크의 비교 연구)

  • Cheah, Wooi-Ping;Kim, Kyoung-Yun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Jeong-Sik
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.

Development of Traffic Accident Frequency Prediction Model in Urban Signalized Intersections with Fuzzy Reasoning and Neural Network Theories (퍼지 및 신경망이론을 이용한 도시부 신호교차로 교통사고예측모형 개발)

  • Kang, Young-Kyun;Kim, Jang-Wook;Lee, Soo-Il;Lee, Soo-Beom
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • This study is to suggest a methodology to overcome the uncertainty and lack of reliability of data. The fuzzy reasoning model and the neural network model were developed in order to overcome the potential lack of reliability which may occur during the process of data collection. According to the result of comparison with the Poisson regression model, the suggested models showed better performance in the accuracy of the accident frequency prediction. It means that the more accurate accident frequency prediction model can be developed by the process of the uncertainty of raw data and the adjustment of errors in data by learning. Among the suggested models, the performance of the neural network model was better than that of the fuzzy reasoning model. The suggested models can evaluate the safety of signalized intersections in operation and/or planning, and ultimately contribute the reduction of accidents.

Fuzzy Cognitive Map Construction Support System based on User Interaction (사용자 상호작용에 의한 퍼지 인식도 구축 지원 시스템)

  • Shin, Hyoung-Wook;Jung, Jeong-Mun;Cheah, Wooi Ping;Yang, Hyung-Jeong;Kim, Kyoung-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.1-9
    • /
    • 2008
  • Fuzzy Cognitive Map, one of ways to model, describe and infer reasoning relations, is widely used in the field of reasoning knowledge engineering. Despite of the natural and easy understanding of decision and smooth explanation of relation between front and rear, reasoning relation is organized with mathematical haziness and complex algorithm and rarely has an interactive user interface. This paper suggests an interactive Fuzzy Cognitive Map(FCM) construction support system. It builds a FCM increasingly concerning multiple experts' knowledge. Futhermore, it supports user-supportive environment by dynamically displaying the structure of Fuzzy Cognitive Map which is constructed by the interaction between experts and the system.

Design of fault diagnostic system by using extended fuzzy cognitive map (확장된 퍼지인식맵을 이용한 고장진단 시스템의 설계)

  • 이쌍윤;김성호;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.860-863
    • /
    • 1997
  • FCM(Fuzzy Cognitive Map) is a fuzzy signed directed graph for representing causal reasoning which has fuzziness between causal concepts. Authors have already proposed FCM-based fault diagnostic scheme. However, the previously proposed scheme has the problem of lower diagnostic resolution. In order to improve the diagnostic resolution, a new diagnostic scheme based on extended FCM which incorporates the concept of fuzzy number into FCM is developed in this paper. Furthermore, an enhanced TAM(Temporal Associative Memory) recall procedure and pattern matching scheme are also proposed.

  • PDF

Performance Improvement of Case-based Reasoning Using Fuzzy Clustering (피지 클러스터링을 이용한 사례기반 추론의 성능 개선)

  • 현우석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.100-103
    • /
    • 2002
  • 사례 기반 추론(case-based reasoning)은 과거에 유사하게 수행된 적이 있는 사레를 유추하고, 유추된 사례의 해를 이용하여 현재의 문계를 해결하는 기법으로서 규칙 기반 추론과 함께 여러 분야에 이용되고 있다. 하지만 사례기반 추론시 사레베이스로부터의 유사성에 근거한 검색을 해야 하므로 사례베이스의 크기가 증가하게 되면 검색시간이 길어지게 되거나 적절하지 못한 사레가 조회될 수 있다 특히 사레베이스 내의 모든 사례에 대하여 유사도를 계산하게 되기 때문에 수행속도가 현저히 저하되는 문제점을 지니고 있다. 본 논문에서는 규칙 및 퍼지 클러스터링에 의한 사레기반추론을 이용한 E-FFIS(Enhanced-Fire Fighting Intelligent System)를 제안한다. 제안하는 시스템은 기존의 H-FFIS(Hybrid-Fire fighting Intelligent System)와 비교해 보았을 때 수행시간을 감소시키면서 정확성을 높이게 되었다.

  • PDF

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.