• Title/Summary/Keyword: Fuzzy Prediction System

Search Result 240, Processing Time 0.026 seconds

Monitoring System for Abnormal Cutting States in the Drilling Operation using Motor Current (모터전류를 이용한 드릴가공에서의 절삭이상상태 감시 시스템)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.98-107
    • /
    • 1995
  • The in-process detection of drill wear and breakage is one of the most importnat technical problems in unmaned machining system. In this paper, the monitoring system is developed to monitor abnormal drilling states such as drill breakage, drill wear and unstable cutting using motor current. Drill breakage is detected by level monitoring. Tool wear is classified by fuzzy pattern recognition. The key feature for classification of tool wear is the estimated flank wear which is calculated by the proposed flank wear model. The characteristic of the model is not sensitive to the variation of cutting conditions but is sensitive to drill wear state. Unstable cutting states due to the unsmooth chip disposal and the overload are monitored by the variance/mean ratio of spindle motor current. Variance/mean ratio also includes the information about the prediction of drill wear and drill breakage. The evaluation experiments have shown that the developed system works very well.

  • PDF

A Comparative Study on Forecasting Groundwater Level Fluctuations of National Groundwater Monitoring Networks using TFNM, ANN, and ANFIS (TFNM, ANN, ANFIS를 이용한 국가지하수관측망 지하수위 변동 예측 비교 연구)

  • Yoon, Pilsun;Yoon, Heesung;Kim, Yongcheol;Kim, Gyoo-Bum
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.123-133
    • /
    • 2014
  • It is important to predict the groundwater level fluctuation for effective management of groundwater monitoring system and groundwater resources. In the present study, three different time series models for the prediction of groundwater level in response to rainfall were built, those are transfer function noise model (TFNM), artificial neural network (ANN), and adaptive neuro fuzzy interference system (ANFIS). The models were applied to time series data of Boen, Cheolsan, and Hongcheon stations in National Groundwater Monitoring Network. The result shows that the model performance of ANN and ANFIS was higher than that of TFNM for the present case study. As lead time increased, prediction accuracy decreased with underestimation of peak values. The performance of the three models at Boen station was worst especially for TFNM, where the correlation between rainfall and groundwater data was lowest and the groundwater extraction is expected on account of agricultural activities. The sensitivity analysis for the input structure showed that ANFIS was most sensitive to input data combinations. It is expected that the time series model approach and results of the present study are meaningful and useful for the effective management of monitoring stations and groundwater resources.

사회네트워크에서 잠재된 신뢰관계망 추론을 위한 ANFIS 모형

  • Song, Hui-Seok
    • Proceedings of the Korea Database Society Conference
    • /
    • 2010.06a
    • /
    • pp.277-287
    • /
    • 2010
  • We are sometimes interacting with people who we know nothing and facing with the difficult task of making decisions involving risk in social network. To reduce risk, the topic of building Web of trust is receiving considerable attention in social network. The easiest approach to build Web of trust will be to ask users to represent level of trust explicitly toward another users. However, there exists sparsity issue in Web of trust which is represented explicitly by users as well as it is difficult to urge users to express their level of trustworthiness. We propose a fuzzy-based inference model for Web of trust using user behavior information in social network. According to the experiment result which is applied in Epinions.com, the proposed model show improved connectivity in resulting Web of trust as well as reduced prediction error of trustworthiness compared to existing computational model.

  • PDF

A study on the real time quality estimation in laser tailored blank welding (레이저 테일러드 브랭크 용접의 실시간 품질판단 및 통계프로그램에 관한 연구)

  • Park, Young-Whan;Rhee, Se-Hum;Park, Hyun-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.791-796
    • /
    • 2001
  • Welding using lasers can be mass-produced in high speed. In the laser welding, performing real-time evaluation of the welding quality is very important in enhancing the efficiency of welding. In this study, the plasma and molten metal which are generated during laser welding were measured using the UV sensor and IR sensor. The results of laser welding were classified into five categories such as optimal heat input, little low heat input, low heat input, focus off, and nozzle change. Also, a system was formulated which uses the measured signals with a fuzzy pattern recognition method which is used to perform real-time evaluation of the welding quality and the defects which can occur in laser welding. Weld quality prediction program was developed using previous weld results and statistical program which could show the trend of weld quality and signal was developed.

  • PDF

Neuro-Fuzzy Diagnostic Technique for Performance Evaluation of a Chiller (뉴로 퍼지를 이용한 냉동기 성능 진단 기법)

  • Shin, Young-Gy;Chang, Young-Soo;Kim, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.553-560
    • /
    • 2003
  • On-site diagnosis of chiller performance is an essential step fur energy saving business. The main purpose of the on-site diagnosis is to predict the COP of a target chiller. Many models based on thermodynamics background have been proposed for this purpose. However, they have to be modified from chiller to chiller and require deep insight into thermodynamics that most of field engineers are often lacking in. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). Quality of the training data for ANFIS, sampled over June through September, is assessed by checking COP prediction errors. The architecture of the ANFIS, its error bounds, and collection of training data are described in detail.

Prediction of Chaotic Time Series Using Fuzzy Identification (퍼지 식별을 이용한 카오스 시계열 데이터 예측)

  • Ko, Jae-Ho;Bang, Sung-Yun;Do, Byung-Jo;Bae, Young-Chul;Yim, Hwa-Yeoung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.627-629
    • /
    • 1997
  • In this paper, fuzzy logic system equipped with the back-propagation training algorithm as identifiers for nonlinear dynamic systems is described. To improve its performance, Jacob's delta-bar -delta rule is adapted in adjusting stepsize ${\alpha}$, and only y and ${\alpha}$ updating algorithm is suggested. In identifying and predicting the chaotic time series, suggested method is better than Li-Xin Wang's method,[1]

  • PDF

Design of the Neuro-Fuzzy based System for Analyzing Collision Avoidance Measures of Ships (뉴로-퍼지 기반의 선박 충돌 회피 조치 분석 시스템 설계)

  • Yi, Mira
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.113-118
    • /
    • 2017
  • Various studies on the method of ship collision risk assessment for alarm have been reported constantly, and the result of the studies is applied to navigation devices. However, it is known that navigators ignore or turn off frequent alarms from the devices of predicting collision risk, because they may avoid collisions in the most of situations. In oder to make the prediction of ship collision risk more useful, it is necessary to consider the customary actions of ship collision avoidance. This paper proposes a system of analyzing collision avoidance measures of ships according to the types of encounter and managing the avoidance history of each ship. The core module of the system is designed as a neuro-fuzzy based inference system, and the test of the module validates the proposed system.

Design of Fuzzy Model-based Multi-objective Controller and Its Application to MAGLEV ATO system (퍼지 모델 기반 다목적 제어기의 설계와 자기부상열차 자동운전시스템에의 적용)

  • 강동오;양세현;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.211-217
    • /
    • 1998
  • Many practical control problems for the complex, uncertain or large-scale plants, need to simultaneously achieve a number of objectives, which may conflict or compete with each other. If the conventional optimization methods are applied to solve these control problems, the solution process may be time-consuming and the resulting solution would ofter lose its original meaning of optimality. Nevertheless, the human operators usually performs satisfactory results based on their qualitative and heuristic knowledge. In this paper, we investigate the control strategies of the human operators, and propose a fuzzy model-based multi-objective satisfactory controller. We also apply it to the automatic train operation(ATO) system for the magnetically levitated vehicles(MAGLEV). One of the human operator's strategies is to predict the control result in order to find the meaningful solution. In this paper, Takagi-Sugeno fuzzy model is used to simulated the prediction procedure. Another str tegy is to evaluate the multiple objectives with respect to their own standards. To realize this strategy, we propose the concept of a satisfactory solution and a satisfactory control scheme. The MAGLEV train is a typical example of the uncertain, complex and large-scale plants. Moreover, the ATO system has to satisfy multiple objectives, such as seed pattern tracking, stop gap accuracy, safety and riding comfort. In this paper, the speed pattern tracking controller and the automatic stop controller of the ATO system is designed based on the proposed control scheme. The effectiveness of the ATO system based on the proposed scheme is shown by the experiments with a rotary test bed and a real MAGLEV train.

  • PDF

Development of Vibration Diagnosis System for Rotating Machine (회전기계의 이상진동진단 시스템의 개발)

  • 양보석;장우교;김호종
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.325-332
    • /
    • 1996
  • One of the greatest shortcoming in today's predictive maintenance program is the ability to diagnose the mechanical and electrical problems within the machine when the vibration exceeds preset overall and spectral alarm levels. In this study, auto-diagnosis system is constructed by using A/D converter to convert analog to digital singal. With this device the system analyses input signal to diagonosis machine condition. Many plots, which display machine condition, and input values of every channel are calculated in this system. If the falut is found, the system diagnoses automatically using fuzzy algorithm and trend monitoring. Prediction is also performed by the grey system theory. Operator finds out eh machine operating condition intuitively based on with personal computer CRT in using this system.

  • PDF

Design of the Optimal Fuzzy Prediction Systems using RCGKA (RCGKA를 이용한 최적 퍼지 예측 시스템 설계)

  • Bang, Young-Keun;Shim, Jae-Son;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.9-15
    • /
    • 2009
  • In the case of traditional binary encoding technique, it takes long time to converge the optimal solutions and brings about complexity of the systems due to encoding and decoding procedures. However, the ROGAs (real-coded genetic algorithms) do not require these procedures, and the k-means clustering algorithm can avoid global searching space. Thus, this paper proposes a new approach by using their advantages. The proposed method constructs the multiple predictors using the optimal differences that can reveal the patterns better and properties concealed in non-stationary time series where the k-means clustering algorithm is used for data classification to each predictor, then selects the best predictor. After selecting the best predictor, the cluster centers of the predictor are tuned finely via RCGKA in secondary tuning procedure. Therefore, performance of the predictor can be more enhanced. Finally, we verifies the prediction performance of the proposed system via simulating typical time series examples.

  • PDF