• 제목/요약/키워드: Fuzzy Pattern Classification

검색결과 146건 처리시간 0.023초

시계열 자료 코스피200의 패턴분류를 위한 퍼지 서포트 벡타 기계 (Fuzzy Support Vector Machine for Pattern Classification of Time Series Data of KOSPI200 Index)

  • 이수용;손소영;김철응;이일병
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.52-56
    • /
    • 2004
  • 주식시장에서 KOSPI200지수의 상승 또는 하락으로 분류 및 예측하는 정보는 선물 및 옵션시장에서 포토폴리오를 설계할 때 의사결정을 위해 중요한 기준이 된다. 경제지표인 시계열 패턴들의 향후 추세는 가장 최근의 경제패턴에 매우 종속적이기 때문에 최근의 패턴들을 가장 우선적으로 학습해야 할 필요가 있다. 본 논문에서는 시계열분석, 신경회로망, 그리고 다양한 분야에서 각광을 받고 있는 SVM(Support Vector Machine)과 Fuzzy SVM 모형의 분류 및 예측성능을 비교하였다. 특히 학습 DB에 따라 시계열성 속성을 갖는 퍼지소속함수에 가장 적합한 차원을 제시함으로서 Fuzzy SVM이 우수함을 입증하였다.

Fuzzy Classification Method for Processing Incomplete Dataset

  • Woo, Young-Woon;Lee, Kwang-Eui;Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제8권4호
    • /
    • pp.383-386
    • /
    • 2010
  • Pattern classification is one of the most important topics for machine learning research fields. However incomplete data appear frequently in real world problems and also show low learning rate in classification models. There have been many researches for handling such incomplete data, but most of the researches are focusing on training stages. In this paper, we proposed two classification methods for incomplete data using triangular shaped fuzzy membership functions. In the proposed methods, missing data in incomplete feature vectors are inferred, learned and applied to the proposed classifier using triangular shaped fuzzy membership functions. In the experiment, we verified that the proposed methods show higher classification rate than a conventional method.

Change Detection in Land-Cover Pattern Using Region Growing Segmentation and Fuzzy Classification

  • Lee Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제21권1호
    • /
    • pp.83-89
    • /
    • 2005
  • This study utilized a spatial region growing segmentation and a classification using fuzzy membership vectors to detect the changes in the images observed at different dates. Consider two co-registered images of the same scene, and one image is supposed to have the class map of the scene at the observation time. The method performs the unsupervised segmentation and the fuzzy classification for the other image, and then detects the changes in the scene by examining the changes in the fuzzy membership vectors of the segmented regions in the classification procedure. The algorithm was evaluated with simulated images and then applied to a real scene of the Korean Peninsula using the KOMPSAT-l EOC images. In the expertments, the proposed method showed a great performance for detecting changes in land-cover.

규칙의 커플링문제를 최소화하기 위한 퍼지-러프 분류방법 (A Fuzzy-Rough Classification Method to Minimize the Coupling Problem of Rules)

  • 손창식;정환묵;서석태;권순학
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.460-465
    • /
    • 2007
  • 본 논문에서는 규칙의 커플링 문제를 최소화하기 위해 주어진 데이터의 통계적 특성과 퍼지-러프집합을 기반으로 한 새로운 패턴분류 방법을 제안한다. 제안한 방법 하에서 주어진 데이터의 통계적 특성은 입력부 퍼지집합의 파티션 개수를 결정하고, 생성된 규칙의 커플링문제를 최소화하기 위한 선택기준으로 사용하였다. 또한 러프집합은 수치적인 데이터로부터 생성된 규칙들 간의 불필요한 속성들을 제거하기 위한 도구로서 이용하였다. 제안된 방법의 타당성을 검증하기 위하여 Fisher의 IRIS 데이터를 사용하여 기존의 패턴분류 방법과 분류 정확도를 비교하였다. 실험결과, 제안한 방법이 기존의 학습에 의한 방법들보다 비교적 좋은 성능을 가진다는 것을 알 수 있었다.

퍼지 멤버쉽 함수로 최적화된 LVQ를 이용한 패턴 분류 모델 (Pattern Classification Model using LVQ Optimized by Fuzzy Membership Function)

  • 김도현;강민경;차의영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권8호
    • /
    • pp.573-583
    • /
    • 2002
  • 패턴인식은 전처리 과정에서 패턴들의 특징을 추출하고 이를 학습을 통하여 유사한 패턴들끼리 클러스터링을 한 다음 식별 과정을 거쳐 인식하게 된다. 본 연구에서는 OCR 시스템에서의 패턴 인식을 위한 패턴 분류 모델로서 퍼지 멤버쉽 함수를 도입하여 LVQ 학습 알고리즘을 최적화한 F-LVQ(Fuzzy Learning Vector Quantization)를 제안한다 본 논문의 효율성을 검증하기 위하여 한글 및 영어 22종의 글꼴에 대한 숫자 데이타 220개 패턴을 학습한 후 이를 다양한 형태로 변형시킨 4840개의 테스트 패턴에 대하여, 기존의 여러 가지 패턴 분류 모델과의 비교 분석을 통해 그 유효성과 강인성을 증명하였다.

TOLERANT FUZZY PATTERN MATCHING : AN INTRODUCTION

  • DUBOIS, DIDIER;PRADE, HENRI
    • 한국지능시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.3-17
    • /
    • 1993
  • The fuzzy pattern matching technique has been developed in the framework of fuzzy set and possibility theory in order to take into account the imprecision and the uncertainty pervading values which have to be compared to requirements (which may be fuzzy) in a pattern matching process. This paper restates the basic principles and extends them to situations where (sub)patterns are only required to be satisfied up to a given tolerance (which may be fuzzy), or where the different subparts of a compound pattern may have various levels of importance. Both cases correspond to a weakening of elementary patterns. which can be expressed by a fuzzy relations modelling an approximate equality or an uncertain strict equality respectively. We also study the more sophisticated case where some elementary patterns have not to be satisfied with the highest priority provided that weaker requirements remain satisfied. The fuzzy pattern matching technique applies in a variety of problems including the evaluation of soft queries with respect to a fuzzy database, the evaluation of the fuzzy condition parts of rules in approximate reasoning, or the evaluation of the belonging of an ill-known object to a flexible class in classification problems.

  • PDF

패턴인식을 위한 타원형 Fuzzy-ART (Ellipsoid Fuzzy-ART for Pattern Recognition Improvement)

  • 강성호;정성부;임중규;이현관;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.305-308
    • /
    • 2003
  • 본 논문에서는 Fuzzy-ART (Fuzzy-Adaptive Resonance Theory) 신경회로망의 패턴인식 성능을 개선하기 위해 Mahalanobis 거리를 이용한 타원형 fuzzy-ART 신경회로망을 제안한다. 제안한 방식은 벡터공간상에서 패턴의 영역을 규정하기 위해 Mahalanobois 거리 개념을 이용한다. 제안한 방식의 유용성을 확인하기 위해 얼굴인식에 적용하였으며, 기존의 방식과 비교 검토한 결과 유용성을 확인하였다.

  • PDF

Learning Fuzzy Rules for Pattern Classification and High-Level Computer Vision

  • Rhee, Chung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제16권1E호
    • /
    • pp.64-74
    • /
    • 1997
  • In many decision making systems, rule-based approaches are used to solve complex problems in the areas of pattern analysis and computer vision. In this paper, we present methods for generating fuzzy IF-THEN rules automatically from training data for pattern classification and high-level computer vision. The rules are generated by construction minimal approximate fuzzy aggregation networks and then training the networks using gradient descent methods. The training data that represent features are treated as linguistic variables that appear in the antecedent clauses of the rules. Methods to generate the corresponding linguistic labels(values) and their membership functions are presented. In addition, an inference procedure is employed to deduce conclusions from information presented to our rule-base. Two experimental results involving synthetic and real are given.

  • PDF

퍼지규칙 기반 시스템에서 불필요한 속성 감축에 의한 패턴분류 (Pattern classification on the basis of unnecessary attributes reduction in fuzzy rule-based systems)

  • 손창식;김두완
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.109-118
    • /
    • 2007
  • 본 논문에서는 퍼지규칙 기반 시스템에서 규칙 내에 포함된 불완전한 속성을 제거하여 보다 간략화 된 규칙으로도 분류할 수 있는 방법을 제안하였다. 제안한 방법에서는 규칙 내에 포함된 불완전한 속성을 제거하기 위해 러프집합을 이용하였고 보다 명확한 분류를 위해 출력부 소속함수의 적합도가 최대인 속성들을 추출하였다. 또한 모의실험에서는 제안된 방법의 타당성을 검증하기 위해 rice taste data를 기반으로 규칙 감축 전 퍼지 max-product 결과와 규칙 감축 후 퍼지 max-product 결과를 비교하였다. 그 결과, 규칙 감축 전 max-product 결과와 규칙 감축 후 max-product 결과가 정확히 일치함을 볼 수 있었고, 보다 객관적인 검증을 위해 비퍼지화 된 실수 구간을 비교하였다.

  • PDF

계층적 구조를 가진 퍼지 패턴 분류기 설계 (A Design of Fuzzy Classifier with Hierarchical Structure)

  • 안태천;노석범;김용수
    • 한국지능시스템학회논문지
    • /
    • 제24권4호
    • /
    • pp.355-359
    • /
    • 2014
  • 본 논문은 단순한 후반부 구조를 가진 퍼지 모델을 계층적 구조로 결합한 퍼지 패턴 분류기를 제안한다. 계층적 구조를 가진 퍼지 패턴 분류기의 기본 구조는 단순한 후반부 구조를 가진 퍼지 모델을 사용하여 전체 패턴 분류기의 구조적 복잡성을 높이지 않도록 설계 하였다. 입력공간을 계층적으로 분할하기 위하여 대표적인 퍼지 클러스터링 알고리즘인 Fuzzy C-Means clustering 기법을 이용하였다. 분할된 퍼지 입력 공간의 하위 구조를 분석하기 위하여 conditional Fuzzy C-Means 클러스터링 기법을 이용하였다. 계층적으로 분할된 퍼지 입력공간에 간단한 구조를 가진 퍼지 패턴 분류기를 적용하여 계층적 구조를 가진 패턴 분류기를 설계한다. 계층적으로 퍼지 모델들을 결합함으로써 입력 공간의 정보 분석을 거시적인 관점에서 시작하여 세부적으로 분석이 가능하게 되었다. 제안된 퍼지 패턴 분류기의 성능을 평가하기 위하여 다양한 기계 학습 데이터를 사용하였다.