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Learning Fuzzy Rules for Pattern Classification and High-Level Computer Vision

*Chung-Hoon Rhee

Abstract

In many decision making systems, rule-based approaches are used to solve complex problems in the areas of pattern
analysis and compuler vision. In this paper, we present methods for generating fuzzy IF-THEN rules automatically from
traming data for pattern classification and high-level computer vision. The rules are generated by constructing minimal ap-
proxtmale fuzzy aggregalion networks and then training the networks using gradient descent methods. The training data
that represent leatures are treated as lingoistic variables that appear in the antecedent ¢lauses of the rules. Methods to gen-
crate the corresponding hinguistic labels {values) and their membership functions are presented. In addition, an inference
procedure 1s employed 1o deduce conclusions from information presented to our rule-basc. Two experimental results involv-
ing synthetic and real data are given,

[. Introduction The above rule may be translated as:

IF the greenness of a region is RATHER HIGH AND
the texturedness is HIGH AND
the belowness of it 1n relation (o Sky regions is
SOMEWHAT HIGH
THEN it is Trees.

For many high-levcl computer vision syslems, rule-
based approaches have been used to design systems that
try to perform compiex tasks such as image understand-
ing and scene interpretation f1]-[4). In these systems, com-
men-sense knowledge about the world s represented in

lerms ol rules, and the rules are then used by an inference The terms such as “RATHER HIGH,” “HIGH." and
“SOMEWHAT HIGH" are known as linguistic labels.

Linguistic labels, as well as attributcs such as “green”™ and

mechanism to arnve at a meamngful interpretation ol the
contents of the image. Furthermore, determination of pro-

pertics and attribules of image regions and spatial re- “textured” defy precise definitions, and they are best mo-

lationships among image regrons is critical for high-level deled by fuzzy sets (fuzzy linguistic variables (7). Simi-

vision processes mvolved in fasks such as aufonomous larly, spatial relationships among regions such as “left-of,”

navigation, medical image analysts. and scene interpret- “above,” and “below™ are dilficult to mode! using the all-

ation. Tn domatns such as the blocks world [5] and the or-nothing traditional techniques (8] Therefore, we be-

world of gencralized cylinders (6], the propertics (features) lieve that a fuzzy approach to high-level vision will yictd

of the ohjects in the image can be precisely delined. more realistic results.

Therefore, existing technigues for scene description and In the exisling rule based systems for high-level vision,

intespretation perform quite well. However, when the at- the rules are usually cnumeraled by experts. However,

tributes of objects and spatial relationships between ob- this procedure is rather tedious if the number of rules is

Jects are not well-defined (as in the case of ouldoor Jarge. Moreover, in a fuzzy approach, one needs to spe-

scenes), traditional techniques may not be adequate. For cify not only the rules but also the membership functions

example, in a rule-based system 1o interpret outdoor associated with the various linguistic labels. The member-
seenes, a typical rule may be ship fuactions for the labels need to rclate to feature data

[F a region is RATHER GREEN AND HIGHLY
TEXTURED AND
IF the region is SOMEWHA'T BE1L.OW a Sky region
THEN it is Trees.
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il the system is to perform reasonably well. Therefore, the
designing and modeling of membership functions is a cru-
cial aspeet in rule generation. There have been many stu-
dies in the control arca that relate to modeling of mem-
bership functions and rule generation [9]-[12]. These me-
thods have been shown to be very elfective. However,

very hittle work has been done in applying these ideas to
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the area of rule-based computer vision. We believe that
this is a promising area of research and therefore, this is
the focus of this paper.

In this paper, we present methods to gencrate fuzzy
IF-THEN rulcs as well as the membership functions of lin-
guistic labels associated with the rules automaticalty from
training data. The proposed methods are particularly suit-
able Tor pattern classification and high-level vision. Jn Se-
ction 2, we describe the fuzzy aggregation operator (e.g.,
generalized mean), and fuzzy aggregation networks which
we propose to use in our approach. In Scction 3, we pres-
ent a method for generation of fuzzy rules from training
data that tnvolves features with the various steps involved.
In Section 4, we present o method for inference that can
be cmployed with our rule-base to deduce conclusions
from input information. Section 5 presents experimental
results involving our rule generation and inference method
for computer vision applications. These examptes involve
synthetic data and real data from images. Finally. Section

6 pives the summary and conclusions.

Il. Fuzzy Aggregation Operators and Networks

In [13)(14], the propertics of several union and intersec-
tion conncctives, the generalized mean, and the Y-model
have been investigated. The behavior of these connectives
when they arc used in fuzzy apgregation networks has
also been investigated. In particular, the gencralized mean
operator [15] {given below} has severat atiractive proper-

nes.

n bip
Llxy, . Xeiun, ., w,,)=( r w.-xf‘) .

il

where i w;= 1. (4}]
o

For example, the mean value always increases wilth an in-
crease in p [15]. Thus, by varying the value of £ between
—orand T we can oblain various types of aggregation
for values between min and max. For example, £- o is
the min opcrator, go is the gecometric mean, and g4 i
the max operator, Therelore, in the extreme cases, (his
operator can be used as union ar intersection. Also, the
w;’s can be thought of as the relative importance factors
for the different criteria due to the constraing.

in [13){141116]17], the authors discuss methods lor man-
aging the uncertainty inherent in properties (leatures)
while decision making by means of hierarchical fuzzy ag-

gregation networks. [n these hicrarchical networks, each

node aggregates the degree of satislaction ol a particular
criterion. The inputs to each node are the degrees of sat-
isfaction ol each of the sub-criteria, and the output is the
aggregated degree of satisfaction of the criterion. Such hi-
crarchicat networks are known as fuzzy-connective-based
apgregation networks, or luzzy aggregation nctworks for
short.

11 has been shown that optimization procedures based
on gradicnt descent can be used to determine the proper
type of aggregalion connective and parameters af each
node, given only an approxemate structure of the network
and given a sct of training data that represent the inputs
at the bottom-most level and the desired outputs at the
top-most level [13][14]. Also, it has been shown that such
actworks are capable of detecting certain types of redun-
dant fcatures in a decision-making problem. If the atin-
bules, properties, and relationships used in antecedent
clauses of rules in high-level vision systems are interpreted
as c¢ritena, then one can model rule-based region labeling
also as a hierarchical network. In this paper, we use this
idea and the redundancy detection capability of fuzzy ag-
gregation networks to automatically gencrate Muzzy rules

from training data.”

fl. Methods for Learning Fuzzy Rules
Involving Features

Properties {features) of classes can provide the necess-
ary cntities for proper rule gencration. Some features can
be used to discriminate among classes more cffectively
than others depending upon the type of classes involved.
However, when features are not well defined, the classifi-
cation process can become very challenging. In light of
the ideas mentioned above, we develop 2 method {or gen-
crating fzzy rules that deals with features that may not
be well defined {as in the case of natural scenes). The
rules are automatically gencrated lmrom training data. The
proposed method for generating fuzzy IF-THEN 1ype
rules consists of the Tollowing four stages: | ) estimation
of class membership functions, 11} elimination of redun-
dant criteria {features), [l) estimation of the membership
functions ol linguistic labels that best describe the non-re-
dundant leatures, and finally IV} construction of an ap-
proximate network structure that can be used for generat-

ing the rules that best describe the training data.

3.1 Stage | : Estimation of Class or Criterion Member-
ship Functions

Class membership functlions can provide a way ol de-
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termining the degree of satisfaction of classcs or critenia
{features) used in the antecedent clauses of the rules of
type IF-THEN [16][17). They can also be used to com-
pute the degrees of satisfaction of criteria in the bottom
most layer of the aggregation networks. We now present
a method for estimating these membership functions.

In this method, s normalized histogram from the tramn-
ing data is treated as a possibility distribution [14][18] and
the membership 1n cach class for a parlicular feature
value is then directly calculated using these possibility
functions. Onc advantage of this approach is that the
membership values are independent of the membership
valucs in the other classes. Therefore, addition of new
classes Lo the problem can be handled casily. However,
one problem with this method is that when the number of
available training samples is small, we nced to use interp-
olation or smoothing techniques to obtain a reasonable
membership function. We now describe one method to do
this |16].

Let %), ..., xx denote K features, for example position
and texturedness. We [irst normalize the training feature
values so that they fall in the domain (0, 1]. Let there be
one such domain for cach of the X features. Each of
these domains is then fuzzily partitioned mto @ levels
represented by Q corresponding fuzzy sets. Let xf=(x],,
- %5) denote the @ feature vector from class 7, where 7
=1, ..., M. We now definc the class 7 membership func-
tion g} over the domain of feature xx to be compuled as:

a
i) =~ T i) for i=1.,0, 2)
where /() is the membership function of level ¢ defined
over the domain of xi for class 7, and N’ ts the number
of class 7 samples. Equation (2) gives memberships of
features at the @ (fuzzy) levels and can be converted to

normalized memberships 1p @ crisp intervals as follows:

Hild)
max { (1. L o

mxg) = for fisxe<fivy. (3}

where

Ba=0, ;= —Q—J-wl* (i——;) for 1<i<@—1, and fy=1.

In (3), m(xs) denotcs the class 7 membership function
lor feature x;. The shape and support of the membership
functions used to describe the @ levels (i.c.. £ (D controls
the type and extent of the interpolation. One example is

showe i Figure 1.
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i 22
Q-1 Q-1 Q~1
Domain of Discouse

Figure 1. An cxample of  fuzzy sels representing Q levels of a
feature.

3.2 Stage il : Elimination of Redundant Criteria{ Feat-

ures)

In this slage. a method to remove redundant criteria
{features) from the antecedent clauses of the rules is pro-
posed [16). This is achieved by training a threc-layer ag-
gregation network of the type shown in Figure 2. The in-
put layer to the network consists of K leatures {attributes
or properties) that represent a feature vector x. Each [ca-
ture is then aggregated to the middle layer. The class
membership lunclions computed using the method de-
scribed in Stage 1 are used as activation functions in the
nodes of the middle layer. Fors training purposes, the
desired output for a feature vector coming from a par-
ticular class is 1 at the node represcnting the class, and it
is # at all the other nodes. The generalized mean com-
pensative fuzzy aggregation operator 1s used at the output
nodes in the top layer. The network is then trained 1o
lcarn the aggregation conneclive (generalized mean) par-
ameler values that best describe the input/output relation-
ships. The learning is implemented using a modified gradi-
ent descent approach which is explained 1n detail in [13]
[£4]. As the weights approach zero, redundant features

are detected.

Class 1 Class M
Top layer ®, B
Input layer O .

Femure ) Feature K
l'cawre vecr x

Figure 2. Aggregation network used for detecting redundant fe-
alures.

3.3 Stage |l : Determination of the Membership Fun-
ctions of the Linguistic Labels

In order to insure a reliable set of rules for a particular

application, the linguistic labels must be modeled so that

they adequately and compactly describe each criterion (fe-

ature) involved. Therefore, after eliminating redundant



Learning Fuzzy Rules for Paitern Classificalion and High-Levei Computer Vision 67

features {Scction 3.2), the next step in rule generation is to
gencrate Lhe membership functions for the varions hinguis-
tic labels {such as LOW, MEDIUM, and HIGH) that each
non-redundaal leature can take. These membership lun-
ctions may be cstimated rom the membership functions
m,(x,) given in (3). We now explain the procedure to esti-
mate membership functions of linguistic labels.

A suitable parametrized lunction is chosen to model the
membership function of a hinguistic label. Let f(xy, p) de-
note the chosen parametrized function where p={(p,, ...,
Pa) 18 the parameter vector. Then cach of the funclions m;
(x4) is approximated by a set H]={hilx,, pdli=1, .., L]}
ol such parametrized tunctions, where L] is the number
of parametrized functions required Jor a reasonable ap-
proximation of mi(x;). We then form the union Ay of all
such sets /1) for =1, . M. If any two lunctions Aslxs,
pyand Alxy, pm) (hencelorth denoted by Ay and Aum for
short) in Hy have very similar parameter valuecs, then one
of them is removed. {Two parametrized lunctions . and
hem obviously bave distingt parameter values if they both
come (rom the same set #;. If they come [rom sets corre-
sponding to dillerent 7's {i.e., classes), it is still unlikely
that they have similar parameter vatues. Otherwise, it
usually means thal leature X is not good because the fun-
ctions m)(xy) tor two distinet classes overlap too much.)
The resulting Hi consisting of a set of distinct parame-
trized lunctions can he interpreted as the set of member-
ship functions ol the linguistic labels defined over the do-
main ol discourse ol leature xi. Il we denote the cardin-
ality of Hy by £z, we will have L, linguistic labels to de-
scribe the feature xe. Thus. determining the membership
functions of the hnguistic labels reduces to the problem of
estimating the paramcters pi and the number of parame-
trized lunctions required for a sreasonable approximation
of cluss membership functions m;{(x.).

To illustrate the above procedure, we shall consider
Gaussian type lunctions as a suilable parametrized l'une-
tion to model the membership functions ol the linguistic
labels, and describe a method tor estimating the parame-
ters and the number of parametric functions required for
a reasonable approximation of each of the class member-
ship function #2,{x) [16|[E7]. This is shown as follows,

Consider & Gaussian function given by

— 2
Glx. ¢, o) =@ exp [z‘—i (x C) ()

2 o

whese « is the height. ¢ is the mean value, and g is the
standard deviation. Hence, the parameter vector p=la, c

o) for a Gaussian function. If a membership funclion

mj(xy) consists of multiple peaks, we can model il by a

sum of L] Gaussians as follows.

m

m(x) = Gyx) =L aj, Gz, (5)
(]

where

. 1 {xs—cii Y’

Gk =cxp [—3 (_—‘;E.J_) }

is the & parametrized function for feature xy in class 7,

and a;,-.lc,",-. and o, denole the height, the mean value,
and the standard deviation of the Gaussian, respectively.
Hence, pi, = (ay. ¢, 0.

[n order to approximate the class 7 membership func-
tion for feature xy as a sum ol parametrized lunctions, we

could minimize the following objective function

& .

L=~ Y IRk, ply—mi)|’, (6)
1 I

where Alxy, pi) is the # parametrized function (ic.,

gaussian in this case) chosen to model the membership

function »2/(x:} lor feature xx i class 7. We can now use

a gradient descent method 1o estimate the parameter vee-

lor p;; by the following update rule
P =R M

where p s a positive learning constant, The parameter ve-
cior 15 teratively updated until there is little or no change
in the parameter values. This occurs when the partial
derivatives of J2 with respect to cach component of pf,
arc approximately equal to zero (1.¢., when the choser ap-
proximation of parametrized functions &(xe. pi) closely
malches the membership function z2](x.).

For the case of Gaussian functions, the partial derivat-

ives of J{ with respect to cach component of p/; are

ML B G
dal,  AGi(xy)  dal

= (G {xe) — mIx)} G L Ax). (8)

H - 16 ) —c!
VL o (G — iy ZGAT ) °
Il.'h [U‘.,)

L. _ G e i)
and 2L (i) —miry LaCaNBTG) )

aa}, (1)’

It s well known that when using gradieot descent
methods, the choice of the inilial values for the parame-
ters s critical, due to the local mimma problem. There-
tore, for the case of Gaussian lunctions, we can use the
followig heuristic approach [17] consisting of 4 steps (o

obtino the yhia) paramelers.
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Step 1:Generate the membership functions mi'(xk) as ex-
plained i Section 3.1.

Step 2:Using a least squares approximation, fit a poly-
nomial p(x) of the Jowest possible degree (i.e., to
avoid overfitting) such that the (it to cach ;] (xs)
has a reasonably small error,

Step 3:Calculate the extrema {maxima and minima) valucs
for px) in Step 2 and determminc the number of
Gaussians by the number of positive valued max-
im4, ignoring the oncs that have small peaks.

Step 4 Initialize the heights of the Gaussians by the max-
ima valucs (peak values), the mean values as the
locations of these pcaks, and the standard devi-
ation as the shortest value among the distamces
between the mean of cach Gaussian and the near-

est minima or rools of p(x).

3.4 Stage IV Approximate Network Structure for Rule
Generation

The final stage is to obtain the compact set ol rules
which may contain multiple antecedent clauses joined
together either conjunctively or disjunctively. To achieve
this, we use a threc-layer fuzzy aggregation network. We
initially start with an approximate structure for the aggre-
gation nctwork which is then trained to detect redundant
connections, if any. As in Section 3.2, the target (desired)
values for the training data are chosen to be 1 for the
class from which the training data are extracted, and 0
for the remaining classes. When the training is complete
and all the redundant conncctions arc climinated, the
resulting network is interpreted as a set of decision rules.
The nodes in the middle and top layers can represent
cither conjunctive or disjunctive nodes depending on Lhe
final values of the parameters of the aggregation lunction.
For example, when using the generalized mean as the ag-
gregation cornective, then a value much less {greater)
than 1.0 for p indicates a conjunction (disjunction) {c.g.,
Z-o is the min operator and g 1.« s the max operator),
Also, the weights w; determiine the relative importances of
the antecedent clauses in a rule, We now present the
mcthod for constructing the initial approximate structure
for the three-layer network.

Figure 3 shows the approximate network structure lor
implementing this method [17}. From the figure, the input
layer consists of K* input nodes (K* < X), where each in-
pul node represents a non-redundant feature for al least
one class. The botlom layer consists of K groups of nodes,
where each group corresponds to the finguistic labels des-

cribing a non-redundant feature. The % node in the &7
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group uses A (the membership function of the i linguis-
tic label for frature £ obtained from Slage 111) as the acti-
valion function. The middle layer consists of K* groups
of M nodes each, where M is the number of classes. The ¢
* node in group & in the bottom layer is connecled (o the
7" node in the corresponding group in the middle layer if
feature & is considered non-redundant for class 7 and the
support of ki has a non-emply intersection with the sup-
port of m](xs) {the class ; membership function). An il-
lustration s shown in Figure 4. From the figure, the sup-
port of m]{xs) intersects with the support of the linguistic
labels Ay and Aua. Hence, these lingoistic labels would get
connected to the 7 node in the &% group in the middle
layer. The rationale behind this connection is thag if fea-
ture & is redundant for class 7 of the support of the mem-
bership tunction of a hinguishic label has no intersection
with the support of the ctass membership function, then it
cannot appear in the antecedent clause of a rule that
describes the class. (Some parameteized membership fun-
chions such as Gaussians do not vanish anywhere in the
domain. In that case, we use a small a~cut of the mem-
bership function, rather than the support.} This conncc-
tion process s repeated for ali the groups in the bottom
layer. Similarly, the /* nade of every group in the middle
layer that has & connection trom the bottom layer is con-
nected 1o the 7 node of the top layer for j=1. . M.
All middle and top-layer nodes usc the generalized mean

operator as the activation tunction. The non-redundant

Togr layer
Mrddle Layrs

Rurrom Liyet

Input Eiyer @) PR P
Feature 1 Feature & Feature K*

Feature vector x

Figure 3. An approximate nelwork structure for gencrating rules.

Membership range
2

0.0
0.0 02 04 0.6 08 1.0

Feawre k

Figure 4. An example ustrating how connections arc made bet-
ween hottom and middle layers of the approximuite
nelwork structure for generating rules.
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leatures are fed 10 the corresponding groups of nodes tn
the bottom layer as inputs. This compietes the construc-
tion of the imitial approximale aggregation nctwork. When
the training is complele and all the redundant connections
Of any} are climinated, the resulting network s interpreted
as a set ol fuzzy rules. In Section 5. we show several ex-
amples of rule generation using such luzzy aggregabon

nelwiorks.
V. Method for Inference

To demonstrate lhe elfectiveness ol rules that are gen-
crated in any rule-based system, it 15 necessary to deduce
conclusions fromn information that is presented Lo the sys-
tem, Hence, a method lor inferencing needs (o be devel-
oped. In this scction, we describe a method lor inferenc-
ing thal uscs one crisp test feature veclor at a tume. The
method utilizes the rule generation network from the pre-
vious scction. We now present the method for mference
in more detail.

The output veclars in our case are binary vectors tilled
with zeros n all locations but one, and these correspond
to targetl vectors used while traming the rule generalion
nelworks. Since the rules are inferred from the rule gener-
ation network, ideadly the rule generation network will
produce the desired binary output when a test input fea-
ture vector exactly matches an antecedent clause of one
of the rules. I there is no exact match, the oulput will be
a weighted combination of the binary outputl vectors,
where the weights are ideally in proportion 1o the degree
1o which the input matches the corresponding antecedent
clauses. Fhus, the rule generation network {with the ag-
pregation paramelers fixed a1 values oblamed at the end

of traming) can act as a rule-malching network. The out-

Decision
Maximum
Defuzzitication detector
level max{-)
o (x) d,(x)‘ dpy(x)
J J
i M L . M
Rule-Matching
Network
My Mg b hgapy-
Inputlevel R
Featre 1 Feature K*
lest vector x

Figure 5. Inference network.

put of this nctwork can be defuzzified using the maxi-
mum-membership defuzzificabon scheme. This is shown

in Figure 5.
V. Experimental Results

Example 1) [ris data problem

For our first example, we show some results using the
classical “iris data” problem. This problem consists of 3
classes and 4 fealures (such as petal length), with 50 sam-
ples in each class. Each of the tour features was first map-
ped into the interval |0, }]. Features | and 2 are not very
good because there is a lot of overfap in the fealure
values between the classes, as can be seen in Figure 6(a).
However, features 3 and 4 are quite good for character-
ization of the classes, as can be seen in Figure 6(b). We
used 20% of the data from each class (i.e., 10 samples per
class) for testing and the remaining 80% for training for
rules. This was repeated 5 times using different data sets
for testing (e.. cvery (ifth sampic in each class starting
with sample number ) ~5 was used) and the remainder for
training. Results for | of the § trials (i.e., using the test
set thal starts with sample number 5 in each class) are
presented in detail.

Figure 7 shows the class membership functions for the
four [caturcs using 80% of the data. The domain of the
features was quantized into 32 levels and the resulting
histograms werc obtaincd using a triangular window
function with a support of 7 units. Featlures 1 and 2 were
climinated using the redundancy delection method dis-

1.0
x
x
08 x
x = nx b a .
; 06 | ww- Y8 L SN X Class |
2 X 3 O gk Ago A o Class 2
2o B o gpmpghal a4 o
o © A A
° o do °A a
021 ol Qe DOR - >
x 0‘ §°
L)
00 -
0.0 02 0.4 0.6 08 1.0
Feauwre |
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h‘ﬁ'AA .
. ....,,.. 4
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3 08 o-§3ud K Class |
3 o % S . 0 Class 2
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i
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i 02 (X ] 06 R o
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Figure 6. Scatter plot of {a) features 1 and 2, and (b) features 3
and 4 of the “iris daln.”
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Figure 7. Estimaled class membership funclions lor the “iris
data” for (&) feature 1, {b) feature 2. {c) feature 3, and
(d} leature 4 using 80% of 1he dats.

r—
k4
k=
z

=

Membership range
=
by
Membership range

L . " y

00 * oo
(X3} 0.2 0.4 0.6 0.8 1 0.0 w2 0.4 e 08 1.0
Feature 3 Feature 4

@) 13}

Figure 8. Gaussian filled linguistic labels of the “ins data” re-
sulting from TFigure 7 for the two non-redundant
features, (a) feature 3 and (b) fealure 3.

Class | Class 2 Class 3

Class | Class 2 Class 3

L M H L M H L M H I M H
Feature 3 Feature 4 Feature 3 Feature 4
(a)

Figure 9. (a) Approximale network struclure or generaling rules
for the “iris data.” (b} Reduced network after (raining.

Figure 10. Tmages of natural scenes used for raining: (4} Scene
I and (b) Scence 2.
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Table |. Values for the weights and parameter  for the reduced
network in Figure 9(b).

node | 2 k) 4 5 6 7 8 9

weights 456 041 0.17 100G 1.00 1.00 1,00 1.00 1.00
42 059 08}

b 737 -0.14 1.00 102 1.03 100 092 149

Table 2. Confusion salrix for § trials of the “inis data.”

Recognized class

1 2 3

| 5S¢ 0 0

True class 2 )] 47 3
3 0 3 47

cussed in Section 3.2, Figure ¥ shows the membership fun-
ctions of the resulting linguistic Jubels generated by fifting
Gausstans to the non-redundant class membership funct-
wns (1o, features 3 and 4). Figure 9. and Table | show
the final results of training. The rules oblained from the
fmal network i Jagure 6.19(b) arc listed below.
R, 1 Feature 3 is 1LOW OR Feature 4 is LOW
THEN the class is Class 1.
R, [F Feature 3 is MEDIUM AND Feature 4 is ME-
DIUM
THEN the class is Class 2.
Ri:1F Feature 3 is HIGH OR Featwre 4 is HIGH
THEN the class is Class 3.
It can be seep That this sel of reles is a good description
of the data set shown in Figure 6(b). The rules generated
for cach ol the remaining 4 trials gave similar results.
When the inference procedure described in Section 4 was
used ta test the remaining 20% of the data, the aumber
of correet classifications vaned slightly for cach trial. The
average rate ol correct classification for the 5 trials was
96%. Table 2 shows the conlusion matrix for the § trials.
In compurison, when a neural network (backpropaga-
lion algorithm with 8 hiddea unils fully connccted) was
used. the correct classilication rate was 95.3%. ‘Fhis indic-
ates that our method (using o smalter network structure)
perfarms as well as backpropagation.
Fxample 2) Natvral scene problem
As our next example, we present the resulis of 4 more
reabistic experiment involving natural scenes. Figurees 10
(a) and (b} show 1two 200X 200 images of natural scenes
used in training Tor rules. The images consist of three
regions (classes) “road.” “sky,” and “vegetation.” We used
tive Teatures:two color features Gmiensity and  excess
greenk, Iwo texture features thomopeneity and entropy),

and posiion {row number}. The color lcatures (based on
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Figure 13. Membership functions of the outdoor scenes for the
features (a) intensily (b) excess green, (c) homogen-
eity, aud {«}) entropy.

1.0
+ + %
08 "‘”-r;,:t Foigt
. 3 *H‘ S +
N aartet +
& 06 £ O : 4 Road
g L * *: + © Sky
2 + + 4 .
O o4l a +  Vegetstion
L) 2 o
Ai ry
02 gl
ada A
0.0 Al
0.0 0.2 04 0.6 08 1.0
Iniensity
fa)
| X0) . T
4* i
0.8 ¢v&
4.
2 06} 3 & Road
o
% *:"t & o Sky
w 04 +  Vegetation
‘JM“
0.2
00 -
00 02 04 0.6 08 1.0
Homogeneity
(by
1.0 ~
++
DY S N o N
+ F %‘_.’- +
5 ’4 FE
£ 06 o ¥ 4 Rod
=0 ¥ MR +
P + N,,:’ + o Sky
é 04 ¥ - +  Vegetaton
4] A At 5ol
02 ot b ot 4
- + L a +
e
0.0
0.0 02 0.4 0.6 0.8 1O
Intensity

)

Figure 12. Scatler plot of {a) features intensily and entropy, (b)
fealurcs homogeneity and entropy. and (¢} features
intensity and excess green representing the (raining
data ol the outdoor scenes in Figure 10,

Ohta’s cotor space [19]}) were extracted from the red,
green, and blue components of the training scenes after
applying a median filter of siz¢ 3X3 to remove noise
points. The intensity feature vatues were obtained by
averaging the three color components (i.e., {r g +b)/3)

and the excess green feature values by 2g-r-b The two
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Figure 13. Gaussian fitled linguistic labels resulting from the
histograms of the nalural scene data for the fealures
(a} intensity, {b) cxcess preen, (c) homogeneity, and
(d) entropy.
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Figure 14. Heuristically predetermined linguistic labels repres-
cnling the position fealure.
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Figure 15 (a) Approximate network struclure for generaling
rules for the outdoor scene. {b) Reduced network

afler training.

(

Figure 16. Tmages of natural scenes used lor tesling : {(a) Scene 3
and (b} Scoe 4.
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texture lcatures were obtained from the excess green color
feature. Appendix A shows the two color and texture lea-
lure images for the (wo traming scenes. A total ol 100
samples from the class regions (sampled vaiformly) were
used to represent each class (re., S0 samples (rom cach
seene representing road and vegelation, and 100 samples
from Scenc 1 representing sky), Next, the redundancy de-
tection method described in Section 3.2 was used 1o elim-
inate redundant (eatures. Figure 1l shows the estimated
class membership functions of the two color and texture
features using the histogram mcthod alter mapping cach
feature into the interval [0, 1]. As before, the domain of
the features was quantized into 32 levels and the resulling
histograms were obtained wsing a triangular window
function with a support of 7 units. The redundancy detec-
tion method ¢limipated the homogencity feature tor class
“road,” the homogeneity and cntropy leatures for class
“sky,” and the intensity and cxcess green featuses lor
class “vegetation.” Figure 12 shows scatfer plots involy-
ing combinations ol the non-redundant leatures,

Figure 13 shows the estimated membership functions
for the lingusstic labels that describe the four features in
Figure 12. The linguistic labels for the position teature
were heuristically predetermined as shown in Figure 14,
Figure 15 and Table 3 show the final results of training.
After tramng, the position fecature was lurther eliminated
for all classes. The rules obtained from the final network

in Figure 15(b) are listed below,

R [F Intensity is MEDIUM ANID Excess green is
(LOW OR MEDIUM)
THEN the class is Road.

Ruy IF Intensity is HIGH
THEN the class is Sky.

R.; ' 1F Homogeneity is LOW OR Entropy is HIGH
THEN the class is Vegetation,

These rules are similar (0 what an experl might elaborate.

We now presenl some inference results involving the
two training images and two test images {see Figure 16},
Figures 17 shows results of the nference method applied
o one of the trawming scenes, namely Scene 1. Parts (a).
(b). and (¢} of Figures 17 shows the membership values (i
¢., gray levels toward ¢ (255) are considered low {high)
membership) of “road”. “vegetation”, and “sky” respect-
ively, resulting from the outputs of the rule-matching net-
work as discussed in Section 4, Part (d) shows the result-
g labeled images after the defuzzification stage. Simi-

larly, Figure 1R shows the resulting tabeled images lor the
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Table 3. Values for Lthe weights and paraincler p for Lhe reduced
nctwork o [igure 15(bk

node 1 2 3 4 5 6 7 h
weighls DO 10000 0.6501 1.0000 10000 0.9425 10000 10000
1.9996 0.3449 0.0575
p 094K 019218 73004 08280 1.0044 55103 1.0374 1.0257

(d)

Figure 17. Membership values of (a) road, (b) sky, and {¢) veg-
claion resubling from the outputs ol the rule-mat-
ching network. and {d} the resolting laheled image

alter the defuzzilication stage for Scenc 1.

©)

Figure 18. The resulting labeled images after the defuzzification
stage for {a) Scene 2, (b) Scene 3, and (¢) Scenc 4.
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other training image and the two test images.

VI. Summary and Conclusions

In this paper, we discussed various issues involved in
the development of gemerating fuzzy rules automatically
from training data (or high-level vision. We suggested
methods to gencrate linguistic labels and their member-
ship functions to describe the featurcs. These methods
were used 1o develop methods to generate a compact set
of rultes by constructing minimal approximate network
structures using ideas from fuzzy aggregation networks.
Although we use a gradient decent procedure to train the
rule gencration network, convergence to a locat minimum
is unlikely due to the fact that we start with an approxi-
mate network which is reasonably close to the final sol-
ution. Results {rom inferencc show that our proposed
methods for rule generation is effective.
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APPENDIX A

FEATURF. IMAGES OF THE TRAINING SCENES IN SECTION V,

A.1 Scene 1

&

Homogeneity
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