• 제목/요약/키워드: Fuzzy Optimization

검색결과 646건 처리시간 0.034초

PSO를 이용한 뉴로-퍼지 시스템 최적화 (Optimization of Neuro-Fuzzy System using Particle Swarm Optimization)

  • 김승석;전병석;송창규;김주식;김용태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.2073-2074
    • /
    • 2006
  • 본 논문에서는 PSO를 이용한 뉴로-퍼지 모델의 구조 및 파라미터 동정을 실시한다. 진화연산 기법의 무작위 탐색 능력과 오차 미분기반 학습에서의 수렴 특성을 가진 PSO를 이용하여 학습이 진행되는 동안 모델의 구조 및 파라미터를 주어진 학습 데이터에 적합하도록 최적화 시킨다. 또한 모델의 크기를 결정하는 규칙의 수 결정을 클러스터링 기법을 이용하여 소속함수의 수가 증가하더라도 규칙이 지수함수적으로 증가하는 문제를 해결하였다. 제안된 기법의 유용성을 시뮬레이션을 통해 보이고자 한다.

  • PDF

Derivative Evaluation and Conditional Random Selection for Accelerating Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.21-28
    • /
    • 2005
  • This paper proposes a new method for accelerating the search speed of genetic algorithms by taking derivative evaluation and conditional random selection into account in their evolution process. Derivative evaluation makes genetic algorithms focus on the individuals whose fitness is rapidly increased. This accelerates the search speed of genetic algorithms by enhancing exploitation like steepest descent methods but also increases the possibility of a premature convergence that means most individuals after a few generations approach to local optima. On the other hand, derivative evaluation under a premature convergence helps genetic algorithms escape the local optima by enhancing exploration. If GAs fall into a premature convergence, random selection is used in order to help escaping local optimum, but its effects are not large. We experimented our method with one combinatorial problem and five complex function optimization problems. Experimental results showed that our method was superior to the simple genetic algorithm especially when the search space is large.

Implementation of a Particle Swarm Optimization-based Classification Algorithm for Analyzing DNA Chip Data

  • Han, Xiaoyue;Lee, Min-Soo
    • Genomics & Informatics
    • /
    • 제9권3호
    • /
    • pp.134-135
    • /
    • 2011
  • DNA chips are used for experiments on genes and provide useful information that could be further analyzed. Using the data extracted from the DNA chips to find useful patterns or information has become a very important issue. In this paper, we explain the application developed for classifying DNA chip data using a classification method based on the Particle Swarm Optimization (PSO) algorithm. Considering that DNA chip data is extremely large and has a fuzzy characteristic, an algorithm that imitates the ecosystem such as the PSO algorithm is suitable to be used for analyzing such data. The application enables researchers to customize the PSO algorithm parameters and see detail results of the classification rules.

유도전동기의 효율 최적화를 위한 강인 적응제어 (Robust Adaptive Control for Efficiency Optimization of Induction Motors)

  • 황영호;박기광;김홍필;한홍석;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1505-1506
    • /
    • 2008
  • In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.

  • PDF

FNN-PI를 이용한 IPMSM의 효율최적화 제어 (Efficiency Optimization Control of IPMSM using FNN-PI)

  • 정병진;고재섭;최정식;정철호;김도연;전영선;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.395-398
    • /
    • 2008
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In order to maximize the efficiency in such applications, this paper proposes the FNN(Fuzzy Neural-Network)-Pl controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the error back propagation algorithm(EBPA). This paper considers the parameter variation about the motor operation. The operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

Development of Query Transformation Method by Cost Optimization

  • Altayeva, Aigerim Bakatkaliyevna;Yoon, Youngmi;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권1호
    • /
    • pp.36-43
    • /
    • 2016
  • The transformation time among queries in the database management system (DBMS) is responsible for the execution time of users' queries, because a conventional DBMS does not consider the transformation cost when queries are transformed for execution. To reduce the transformation time (cost reduction) during execution, we propose an optimal query transformation method by exploring queries from a cost-based point of view. This cost-based point of view means considering the cost whenever queries are transformed for execution. Toward that end, we explore and compare set off heuristic, linear, and exhaustive cost-based transformations. Further, we describe practical methods of cost-based transformation integration and some query transformation problems. Our results show that, some cost-based transformations significantly improve query execution time. For instance, linear and heuristic transformed queries work 43% and 74% better than exhaustive queries.

Possibility Based Design Optimization of a Light Aircraft using Database Driven Approach

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • 한국항공운항학회:학술대회논문집
    • /
    • 한국항공운항학회 2015년도 추계학술대회
    • /
    • pp.25-28
    • /
    • 2015
  • Aircraft conceptual design usually uses low to medium fidelity analysis to determine the basic configuration of an aircraft. Optimum solution is bounded by at least one of the constraints in most cases. This solution has risk to fail at later stage when analyzed with more sophisticated analysis tools. This research uses pre-constructed database to estimate the analysis prediction errors associated with simplified analysis methods. A possibility based design optimization framework is developed to utilize the newly proposed piecewise-linear fuzzy membership functions that compensate the discrepancies caused by simplified analysis. The proposed approach for aircraft design produces the optimum aircraft configurations that are less likely to fall into infeasible region when analyzed using higher fidelity analysis at later design stages.

  • PDF

퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발 (On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network)

  • 김용호;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.52-64
    • /
    • 1995
  • 로보트 매니퓰레이터는 고도의 비선형 시변 시스템으로써 정밀한 제어가 매우 어려운 제어 대상으로 인식되어 왔으며 따라서 수많은 제어이론의 적용대상이 되어왔다. 로보트 매니퓰레이터의 제어에는 두가지 형태가 있는데 한가지는 궤적계획이고, 또한가지는 궤적 추종이다. 본 논문에서는 궤적 추종을 목적으로 하고, 이를 위해 퍼지논리와 신경회로망을 결합한 지능형 제어를 제안한다. 제안된 제어시스템은 사고 및 추론과 같은 인간의 인식처리에 해당하는 불확실한 것들의 구체화를 가능케하는 퍼지논리와 학습 및 병렬처리능력이 있는 신경회로망을 융합하여 구성된 퍼지-신경망 제어시스템이다. 그러나 이러한 장점을 갖는 퍼지-신경망 제어기도 정확한 제어 규칙의 발생은 어려은데 이는 신경회로망의 지역적 최소치에 빠지는 특성에 기인한다고 볼 수 있다. 그리고 일반적으로 시스템의 비선형 정도는 탐색에 의해서만 알수 있는 성질의 것이므로 본 논문에서는 최적의 탐색알고리듬으로 널리 인정되고 있는 유전알고리듬을 사용하여 전역적이 규칙공간을 탐색한 후 이를 바탕으로 퍼지-신경망 제어기를 완성한다. 제안된 제어시스템의 효율성은 2자유도의 로보트 매니퓰레이터를 사용하여 컴퓨터의 모의실험을 통해 입증된다.

  • PDF

A Hybrid Modeling Architecture; Self-organizing Neuro-fuzzy Networks

  • Park, Byoungjun;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.102.1-102
    • /
    • 2002
  • In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...

  • PDF

장애물이 있는 환경하에서 여유자유도 로보트의 지능제어 방법 (Intelligent control of redundant manipulator in an environment with obstacles)

  • 현웅근;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.168-173
    • /
    • 1991
  • A neural optimization network is proposed to control the redundant robot manipulators in an environment with the obstacle. The weightings of the network are adjusted by considering both the joint dexterity and the capability of collision avoidance of joint differential motion. The fuzzy rules are proposed to determine the capability of collision avoidance of each joint. To show the validities of the proposed method, computer simulation results are illustrated for the redundant robot of the planner type with three degrees of freedom.

  • PDF