• 제목/요약/키워드: Fuzzy Nonlinear Control

검색결과 839건 처리시간 0.026초

파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어 (Load Frequency Control using Parameter Self-Tuning fuzzy Controller)

  • 탁한호;추연규
    • 한국지능시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.50-59
    • /
    • 1998
  • This paper presents stabilization and adaptive control of flexible single link robot manipulator system by self-recurrent neural networks that is one of the neural networks and is effective in nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure which has a hidden layer. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end, transverse vibration may occur. The motor toroque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipuators so that it is arresed as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large changes in configuration common to robotic tasks requires dynamic models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a dynamic models for a flexible single link robot manipulator is derived, and then a comparative analysis was made with linear controller through an simulation and experiment. The results are proesented to illustrate thd advantages and imporved performance of the proposed adaptive control ove the conventional linear controller.

  • PDF

Gradient Descent 알고리즘을 이용한 퍼지제어기의 멤버십함수 동조 방법 (Tuning Method of the Membership Function for FLC using a Gradient Descent Algorithm)

  • 최한수
    • 한국산학기술학회논문지
    • /
    • 제15권12호
    • /
    • pp.7277-7282
    • /
    • 2014
  • 본 연구에서는 gradient descent 알고리즘을 퍼지제어기의 동조를 위해 멤버십함수의 폭을 해석하는데 이용하였으며 이 해석은 퍼지 제어규칙의 전건부와 후건부 퍼지변수들을 변화시켜 보다 개선된 제어 효과를 얻기 위해 사용된다. 이 방법은 제어기의 파라미터들이 gradient descent 알고리즘의 반복 과정에서 제어변수를 선택하는 것이다. 본 논문에서는 궤환 목표치 제어를 위해 7개의 멤버십함수와 49개의 규칙 그리고 2개의 입력과 1개의 출력을 갖는 FLC을 사용하였다. 추론은 Min-Max 합성법을 이용하였고 멤버십함수는 13개의 양자화 레벨에 대한 삼각 형태를 채택하였다.

ANFIS 전 보상 PID 제어기에 의한 2지역 전력계통의 부하주파수 제어에 관한 연구 (A Study on the Load Frequency Control of Two-Area Power System using ANFIS Precompensated PID Controller)

  • 정문규;정형환;주석민;안병철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1314-1317
    • /
    • 1999
  • In this paper, we design an Adaptive Neuro-Fuzzy Inference System(ANFIS) Precompensator for the performance improvement of conventional proportional integral derivative (PID) controller that the governor system of power plant constantly maintains the load frequency of two-area power system. The ANFIS Precompensator is expressed as the membership functions of premise parameters and the linear combination of consequent parameters by Sugeno's fuzzy if-then rules using nonlinear input-output relation for the set point automatic modification maintaining conventional PID controller. The proposed compensation design technique is hoped to be satisfactory method overcome difficulty of exact modelling and arising problems by the complex nonlinearities of power system, and our design shows merit that is easily implemented by adding an ANFIS precompenastor to an existing PID controller without replacement.

  • PDF

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.

초음파 및 적외선 센서 기반 자율 이동 로봇의 견실한 실시간 제어 (Robust Real-time Control of Autonomous Mobile Robot Based on Ultrasonic and Infrared sensors)

  • 노연판쿠웨트;한성현
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.145-155
    • /
    • 2010
  • This paper presents a new approach to obstacle avoidance for mobile robot in unknown or partially unknown environments. The method combines two navigation subsystems: low level and high level. The low level subsystem takes part in the control of linear, angular velocities using a multivariable PI controller, and the nonlinear position control. The high level subsystem uses ultrasonic and IR sensors to detect the unknown obstacle include static and dynamic obstacle. This approach provides both obstacle avoidance and target-following behaviors and uses only the local information for decision making for the next action. Also, we propose a new algorithm for the identification and solution of the local minima situation during the robot's traversal using the set of fuzzy rules. The system has been successfully demonstrated by simulations and experiments.

SOS 제어기법을 이용한 입력제한이 있는 2관절 로봇팔의 조정제어 (Regulation Control of Two-Link Robot Arm with the Input Constraint using Sum of Squares Method)

  • 정진강;좌동경
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1270-1276
    • /
    • 2016
  • This paper proposes the controller design for regulation control of two-link robot arm using sum of squares (SOS) control method that takes into account the input constraint. The existing studies of two link robotic arm system used a linear model of all the non-linearity of the system is linearized. For a linear controller, since the model of the system is simplified, it is possible to design a controller in consideration of constraints on the disturbance. However, there is a limit to the performance using a linearized model for a system with a complex nonlinear properties. To compensate for this in the case of using a fuzzy LMI method, it is necessary to have a large number of linear models and thus there is a disadvantage that the system becomes complicated. To solve these problems, we represents a two-link robot arm system with a polynomial model using a Taylor series expansion and design the controller considering the case where the magnitude of the control input is limited using SOS method. We demonstrate by simulations the feasibility of the proposed algorithm.

대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계 (Design of Semi-Active Tendon for Vibration Control of Large Structures)

  • 김상범;윤정방;구자인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

퍼지제어기를 이용한 로보트 액츄에이터용 초음파 모터의 온도 보상에 관한 연구 (The Study on the Temperature Compensation of Ultrasonic Motor for Robot Actuator Using Fuzzy Controller)

  • 차인수;유권종;백형래;김영동
    • 전력전자학회논문지
    • /
    • 제3권3호
    • /
    • pp.165-172
    • /
    • 1998
  • USM의 전기 기계적인 변환은 USM의 고정자에 정렬된 PZT트랜듀서를 구동하기 위한 2-상 고주파 전력 변환부와 고정자와 회전자 사이에 마찰력을 변환하는 기계적인 트러로써 나눠지며 이러한 구조특성 때문에 온도에 의한 비선형 특성이 내포하게 된다. 초음파 모터의 외함의 온도가 +2$0^{\circ}C$~3$0^{\circ}C$에서는 정상적인 특성을 나타내지만 장시간의 운전에 의한 모터의 마찰열에 의해 온도증가는 구동주파수, 구동전류, 속도의 감소를 가져온다. 현재 사용되고 있는 초음파 모터는 온도에 대한 보상이 이뤄지지 않고 있다. 본 논문에서는 퍼지제어 기법을 통해 초음파 모터의 운전중 외함의 온도증가에 따른 속도 보상용 시스템을 제안한다.

면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용 (Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice)

  • 조재훈;김동화;오성권
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.402-410
    • /
    • 2004
  • 본 논문에서는 복잡하고 비선형적인 시스템을 위하여 최적 면역 알고리즘의 개선된 클론선택에 기반을 둔 최적FNN 설계방법을 제안한다. FNN은 퍼지추론의 간략 추론과 학습방법으로는 오류역전파 알고리즘을 하였고 멤버쉽함수의 파라미터, 학습률 및 모멘텀 계수들을 선정하기 위하여 개선된 클론 선택을 사용하는 방법을 도입하였다. 제안한 알고리즘은 생체의 면역반응에 기초를 둔 면역알고리즘의 클론선택을 기본으로 분화율을 조절하여 성능을 개선하였다. 그 과정을 통하여 다양한 항체들을 생성하고 목적함수나 제한조건과 같은 항원들에 대하여 가장 높은 친화도를 가지는 항체를 최적 항체로 선택하였다. 제안된 알고리즘의 성능을 평가하기 위하여 가스로공정과 교통경로선택 공정을 사용한다.