• Title/Summary/Keyword: Fuzzy Nonlinear Control

Search Result 838, Processing Time 0.023 seconds

Development of Fuzzy controller for battery cell balancing of agricultural drones (농업용 드론의 배터리 셀 밸런싱을 위한 퍼지제어기 개발)

  • Lee, Sang-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.199-208
    • /
    • 2017
  • Lithium polymer batteries are used in energy storage systems (ESS), electric vehicles (EVs), etc. due to their high safety, fast charging and long lifecycle, and now they are used in agricultural drones. However, when overcharging and overdischarging, the lithium-polymer battery is destroyed in the gap structure in the lithium-ion battery and the battery life is reduced. In order to prevent overcharge and overdischarge, uneven cell voltage Cell balancing system is needed. In this paper, a fuzzy controller suitable for nonlinear systems is proposed by detecting the unbalanced cells by detecting the voltage difference between charging and discharging of each cell, and suggesting the applied cell balancing algorithm. In this paper, we have designed the cell balancing of the battery pack of agricultural drones by fuzzy control and it is designed for equal control between cells. As a final result, we checked whether cell balancing is good, and when there are two cells, Cell balancing was confirmed. We tested whether it could be used for other products. As a result, we confirmed that cell balancing is good regardless of the number of cells used.

Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers

  • Eliasi, Hussein;Yazdani, Hessam;Khatibinia, Mohsen;Mahmoudi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.633-645
    • /
    • 2022
  • The active tuned mass damper (ATMD) is an efficient and reliable structural control system for mitigating the dynamic response of structures. The inertial force that an ATMD exerts on a structure to attenuate its otherwise large kinetic energy and undesirable vibrations and displacements is proportional to its excursion. Achieving a balance between the inertial force and excursion requires a control law or feedback mechanism. This study presents a technique for the optimum design of a sliding mode controller (SMC) as the control law for ATMD-equipped structures subjected to earthquakes. The technique includes optimizing an SMC under an artificial earthquake followed by testing its performance under real earthquakes. The SMC of a real 11-story shear building is optimized to demonstrate the technique, and its performance in mitigating the displacements of the building under benchmark near- and far-fault earthquakes is compared against that of a few other techniques (proportional-integral-derivative [PID], linear-quadratic regulator [LQR], and fuzzy logic control [FLC]). Results indicate that the optimum SMC outperforms PID and LQR and exhibits performance comparable to that of FLC in reducing displacements.

A Study on Adaptive Random Signal-Based Learning Employing Genetic Algorithms and Simulated Annealing (유전 알고리즘과 시뮬레이티드 어닐링이 적용된 적응 랜덤 신호 기반 학습에 관한 연구)

  • Han, Chang-Wook;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.819-826
    • /
    • 2001
  • Genetic algorithms are becoming more popular because of their relative simplicity and robustness. Genetic algorithms are global search techniques for nonlinear optimization. However, traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain because they are poor at hill-climbing, whereas simulated annealing has the ability of probabilistic hill-climbing. Therefore, hybridizing a genetic algorithm with other algorithms can produce better performance than using the genetic algorithm or other algorithms independently. In this paper, we propose an efficient hybrid optimization algorithm named the adaptive random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural networks. This paper describes the application of genetic algorithms and simulated annealing to a random signal-based learning in order to generate the parameters and reinforcement signal of the random signal-based learning, respectively. The validity of the proposed algorithm is confirmed by applying it to two different examples.

  • PDF

A Design of the Robust Servo Controller for DC Servo-Motor Using Genetic Algorithm (유전알고리즘을 이용한 강인한 DC 서보제어기의 설계)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Hwang, Hyun-Joon;Nam, Jing-Lak;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.812-814
    • /
    • 1999
  • In this paper, we are applied the Genetic Algorithm (GA) to design of fuzzy logic controller (FLC) for a DC Servo-Motor Speed Control. GA is used to design of the membership functions and scaling factor of FLC. To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC servo-motor system with nonlinear characteristics. Experimental results show that proposed controller have better performance than those of PD controller.

  • PDF

Sensorless Control of IPMSM with Adaptive-Fuzzy State Observer (적응-퍼지 상태관측기에 의한 IPMSM의 센서리스 제어)

  • Jung Taek-Gi;Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Chung Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.186-189
    • /
    • 2003
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. A gopinath observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of IPMSM, that employs a d-q rotating reference frame attached to the rotor, A gopinath observer is implemented to compute the speed and position feedback signal. The validity of the proposed scheme is confirmed by various response characteristics.

  • PDF

The Study on the Control of Robot Manipulator by Modification of Reference Trajectory (기준 경로의 변형에 의한 로붓 매니플레이터 제어에 관한 연구)

  • Min, Kyoung-Won;Lee, Jong-Soo;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1205-1207
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researchs to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used a fuzzy system based on the rule bases. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In the simulations of several cases, our method showed better trajectory tracking performance compared with the CTM.

  • PDF

A Two-Degree-of-Freedom-Controller for DC Motors Using Inverse Dynamics and the Fuzzy Technique (역동력학과 퍼지기법을 이용한 DC 모터용 2자유도 제어기)

  • Kim, Byong-Man;Kim, Jong-Hwa;Yu, Yung-Ho;Jin, Gang-Gyoo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • In this paper, a Two-Degree-of-Freedom-Controller(TDFC) for DC motors based on inverse dynamics and the fuzzy technique is presented. The proposed controller includes the inverse dynamic model of a DC motor system, a prefilter and a fuzzy compensator. The model of the system is characterized by a nonlinear equation with coulomb friction. The prefilter eliminates high frequency effects occurring when the inverse dynamic model is implemented. The fuzzy compensator is designed for tracking the change of the reference input and simultaneously regulating the error between the reference input and the system output which can be caused by disturbances. The optimal parameters of both the model and the compensator are identified by a real-coded genetic algorithm. An experimental work on a DC motor system is carried out to verify the performance of the proposed controller.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Improvement of Control Performance of Array-Sensor System Using Soft Computing (Soft Computing을 이용한 배열 센서 시스템의 제어 성능 개선)

  • Na, Seung-You;Ahn, Myung-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2003
  • In this paper, we propose a method to obtain a linear characteristic using soft computing for systems which have array sensors of nonlinear characteristics. Also a procedure utilizing the pattern information of array sensors without additional sensors is proposed to reduce disturbance effects. For a typical example, even a single CdS cell for CdS array has nonlinear characteristics. Overall linear characteristic for CdS array is obtained using fuzzy logic for each cell and overlapped portion. In addition, further improvement for linearization is obtained applying genetic algorithms for the parameters of membership functions. Also the effect of disturbing external light changes to the CdS array can be reduced without using any additional sensors for calibration. The proposed method based on fuzzy logic shows improvements for position measurements and disturbance reduction to external light changes due to the fuzziness of the shadow boundary as well as the inherent nonlinearity of the CdS array. This improvement is shown by applying the proposed method to the ball position measurements of a magnetic levitation system.

Load Frequency Control using Parameter Self-Tuning fuzzy Controller (파라미터 자기조정 퍼지제어기를 이용한 부하주파수제어)

  • 탁한호;추연규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.50-59
    • /
    • 1998
  • This paper presents stabilization and adaptive control of flexible single link robot manipulator system by self-recurrent neural networks that is one of the neural networks and is effective in nonlinear control. The architecture of neural networks is a modified model of self-recurrent structure which has a hidden layer. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. When a flexible manipulator is rotated by a motor through the fixed end, transverse vibration may occur. The motor toroque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible manipuators so that it is arresed as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large changes in configuration common to robotic tasks requires dynamic models that describe both the rigid body motions, as well as the flexural vibrations. Therefore, a dynamic models for a flexible single link robot manipulator is derived, and then a comparative analysis was made with linear controller through an simulation and experiment. The results are proesented to illustrate thd advantages and imporved performance of the proposed adaptive control ove the conventional linear controller.

  • PDF