• Title/Summary/Keyword: Fuzzy Nonlinear Control

Search Result 838, Processing Time 0.025 seconds

Hybrid Rule-Interval Variation(HRIV) Method for Stabilization a Class of Nonlinear Systems (비선형 시스템의 안정을 위한 HRIV 방법의 제안)

  • Myung, Hwan-Chun;Z. Zenn Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.249-255
    • /
    • 2000
  • HRIV(Hybrid Rule-Interval Variation) method is presented to stabilize a class of nonlinear systems, where SMC(Sliding Mode Control) and ADC (ADaptive Control) schemes are incorporated to overcome the unstable characteristics of a conventional FLC(Fuzzy Logic Control). HRIV method consists of two modes: I-mode (Integral Sliding Mode PLC) and R-mode(RIV method). In I-mode, SMC is used to compensate for MAE(Minimum Approximation Error) caused by the heuristic characteristics of FLC. In R-mode, RIV method reduces interval lengths of rules as states converge to an equilibrium point, which makes the defined Lyapunov function candidate negative semi-definite without considering MAE, and the new uncertain parameters generated in R-mode are compensated by SMC. In RIV method, the overcontraction problem that the states are out of a rule-table can happen by the excessive reduction of rule intervals, which is solved with a dynamic modification of rule-intervals and a transition to I-mode. Especially, HRIV method has advantages to use the analytic upper bound of MAE and to reduce Its effect in the control input, compared with the previous researches. Finally, the proposed method is applied to stabilize a simple nonlinear system and a modified inverted pendulum system in simulation experiments.

  • PDF

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.

A New Design Method for T-S Fuzzy Controller with Pole Placement Constraints

  • Joh, Joongseon;Jeung, Eun-Tae;Chung, Won-Jee;Kwon, Sung-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.72-80
    • /
    • 1997
  • A new design method for Takagi-Sugeno (T-S in short) fuzzy controller which guarantees global asymptotic stability and satisfies a desired performance is proposed in this paper. The method uses LMI(Linear Matrix Inequality) approach to find the common symmetric positive definite matrix P and feedback fains K/sub i/, i= 1, 2,..., r, numerically. The LMIs for stability criterion which treats P and K'/sub i/s as matrix variables is derived from Wang et al.'s stability criterion. Wang et al.'s stability criterion is nonlinear MIs since P and K'/sub i/s are coupled together. The desired performance is represented as $ LMIs which place the closed-loop poles of $ local subsystems within the desired region in s-plane. By solving the stability LMIs and pole placement constraint LMIs simultaneously, the feedback gains K'/sub i/s which gurarntee global asymptotic stability and satisfy the desired performance are determined. The design method is verified by designing a T-S fuzzy controller for an inverted pendulum with a cart using the proposed method.

  • PDF

Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.155-171
    • /
    • 2019
  • In this study, Semi-active Tuned Mass Dampers (STMDs) are employed in order to cover the prevailing uncertainties and promote the efficiency of the Tuned Mass Dampers (TMDs) to mitigate undesirable structural vibrations. The damping ratio is determined using type-1 and type-2 Fuzzy Logic Controllers (T1 and T2 FLC) based on the response of the structure. In order to increase the efficiency of the FLC, the output membership functions are optimized using genetic algorithm. The results show that the proposed FLC can reduce the sensitivity of STMD to excitation records. The obtained results indicate the best operation for T1 FLC among the other control systems when the uncertainties are neglected. According to the irrefutable uncertainties, three supplies for these uncertainties such as time delay, sensors measurement noises and the differences between real and software model, are investigated. Considering these uncertainties, the efficiencies of T1 FLC, ground-hook velocity-based, displacement-based and TMD reduce significantly. The reduction rates for these algorithms are 12.66%, 26.43%, 20.98% and 21.77%, respectively. However, due to nonlinear behavior and considering a range of uncertainties in membership functions, T2 FLC with 7.2% reduction has robust performance against uncertainties compared to other controlling systems. Therefore, it can be used in actual applications more confidently.

Performance Improvement for Back-stepping Controller of a Mobile Robot Based on Fuzzy Systems (퍼지추론을 이용한 이동로봇의 백스테핑 제어기 성능개선)

  • 박재훼;진태석;이만형
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.308-316
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot, which is affected by the derived velocity reference by a kinematic controller. To improve the performance of conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. In this paper, the new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. And simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

A Relaxed Stabilization Condition for Discrete T-S Fuzzy Model under Imperfect Premise Matching (불완전한 전반부 정합 하에서의 이산 T-S 퍼지 모델에 대한 완화된 안정화 조건)

  • Lim, Hyeon Jun;Joo, Young Hoon;Park, Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • In this paper, a controller for discrete Takagi-Sugeno(T-S) fuzzy model under imperfect premise matching is proposed. Most of previous papers have obtained the stabilization condition using common quadratic Lyapunov function. However, the stabilization condition may be conservative due to the typical disadvantage of the common quadratic Lyapunov function. Hence, in order to solve this problem, we propose the stabilization condition of discrete T-S fuzzy model using fuzzy Lyapunov function. Finally, the proposed approach is verified by the simulation experiments.

Design of Stabilizing Takagi-Sugeno Fuzzy Controllers - An LIM Approach (안정도를 보장하는 Takagi-Sugeno 퍼지 제어기의 설계 - 선형행렬부등식을 이용한 풀이 -)

  • 김진성;박주영;박대희
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.51-60
    • /
    • 1998
  • There have been several recent studies concerning the stability of fuzzy control system and the synthesis of stabilizing fuzzy controllers. This paper reports on a related study nf the TS (Takagi-Sugeno) fuzzy systems, and it is shown that the controller synthesis problems for the nonlinear systems described by the TS fuzzy model can be reduced to convex problems involving LMIs (linear matrix ineclualities). After classifying the TS fuzzy systems into three families based on how diverse their input matrices are, different controller synthesis procedure is given for each of these families. A numerical example is presented to illustrate the synthesis procedures developed in this paper.

  • PDF

Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion (항공기 종 제어를 위한 Interval Type-2 퍼지논리 제어시스템)

  • Cho, Young-Hwan;Lee, Hong-Gi;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.168-173
    • /
    • 2015
  • The flight control of aircraft, which has nonlinear time-varying dynamic characteristics depending on the various and unexpected external conditions, can be performed on two motions: longitudinal motion and lateral motion. In the longitudinal motion control of aircraft, pitch and trust are major control parameters and roll and yaw are control ones in the lateral motion control. Until now, a number of efficient and reliable control schemes that can guarantee the stability and maneuverability of the aircraft have been developed. Recently, the intelligent flight control scheme, which differs from the conventional control strategy requiring the various and complicate procedures such as the wind tunnel and environmental experiments, has attracted attention. In this paper, an intelligent longitudinal control scheme has been proposed utilizing Interval Type-2 fuzzy logic which can be recognized as a representative intelligent control methodology. The results will be verified through computer simulation with a F-4 jet fighter.

MPPT Control of Photovoltaic using VS-PO Method (VS-PO 방법을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.45-53
    • /
    • 2015
  • A I-V and P-V characteristic of solar cell is changed to nonlinear by radiation and temperature. Therefore, to use efficiently PV system, operating point of PV system is must operate at maximum power point always. A performance of conventional the PO and the IC method is depend on the step size. So it has weakness which is must select optimal step size. Also, MPPT control applying PI and fuzzy control is not expected satisfactory performance, because of PI controller has fixed gain and fuzzy control has cumulative error by an integral calculus. Therefore, this paper proposes the VS-PO(Variable Stepsize - Perturbation & Observation) MPPT control that is automatically adjusted the step size according to the operating conditions. The VS-PO MPPT method proposed in this paper analyzes control characteristic about condition of radiation and compares with conventional methods. The validity of this paper proves using this results.

Design of PWM-Based Fuzzy Controller for Nonlinear Systems

  • Cha, Dai-Bum;Cho, Kwang-Lae;Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.35.6-35
    • /
    • 2002
  • $\textbullet$ The duffing forced oscillation system. $\textbullet$ The picture is result of the computer simulation. $\textbullet$ Control input of the PWM controller. $\textbullet$ The solid line type is resulted by digital controller. $\textbullet$ The dotted line type is resulted by analogue controller.

  • PDF