• Title/Summary/Keyword: Fuzzy Neural Neural Network.

Search Result 1,209, Processing Time 0.028 seconds

Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Yoon-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.111-118
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

A Construction of Fuzzy Inference Network based on Neural Logic Network and its Search Strategy

  • Lee, Mal-rey
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.375-389
    • /
    • 2000
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule- inference. network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search costs for searching sequentially and searching by means of search priorities.

  • PDF

A Study on the Self-Evolving Expert System using Neural Network and Fuzzy Rule Extraction (인공신경망과 퍼지규칙 추출을 이용한 상황적응적 전문가시스템 구축에 관한 연구)

  • 이건창;김진성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.231-240
    • /
    • 2001
  • Conventional expert systems has been criticized due to its lack of capability to adapt to the changing decision-making environments. In literature, many methods have been proposed to make expert systems more environment-adaptive by incorporating fuzzy logic and neural networks. The objective of this paper is to propose a new approach to building a self-evolving expert system inference mechanism by integrating fuzzy neural network and fuzzy rule extraction technique. The main recipe of our proposed approach is to fuzzify the training data, train them by a fuzzy neural network, extract a set of fuzzy rules from the trained network, organize a knowledge base, and refine the fuzzy rules by applying a pruning algorithm when the decision-making environments are detected to be changed significantly. To prove the validity, we tested our proposed self-evolving expert systems inference mechanism by using the bankruptcy data, and compared its results with the conventional neural network. Non-parametric statistical analysis of the experimental results showed that our proposed approach is valid significantly.

  • PDF

Dynamic Control of Track Vehicle Using Fuzzy-Neural Control Method (퍼지-뉴럴 제어기법에 의한 궤도차량의 동적 제어)

  • 한성현;서운학;조길수;윤강섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.133-139
    • /
    • 1997
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is propored a learning controller consisting of two neural network-fuzzy based on independent resoning and a connection net with fixed weights to simply the neural network-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle

  • PDF

Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle (K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Nonlinear Controller Design by Hybrid Identification of Fuzzy-Neural Network and Neural Network (퍼지-신경회로망과 신경회로망의 혼합동정에 의한 비선형 제어기 설계)

  • 이용구;손동설;엄기환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.127-139
    • /
    • 1996
  • In this paper we propose a new controller design method using hybrid fuzzy-neural netowrk and neural network identification in order ot control systems which are more and more getting nonlinearity. Proposed method performs, for a nonlinear plant with unknown functions, hybird identification using a fuzzy-neural network and a neural network, and then a stable nonlinear controller is designed with those identified informations. To identify a nonlinear function, which is directly related to input signals, we can use a neural network which is satisfied with the proposed stable condition. To identify a nonlinear function, which is not directly related to input signals, we can use a fuzzy-neural network which has excellent identification characteristics. In order to verify excellent control performances of the proposed method, we compare the porposed control method with a conventional neural network control method through simulations and experiments with one link manipulator.

  • PDF

The neural network controller design with fuzzy-neuraon and its application to a ball and beam (볼과 빔 제어를 위한 퍼지 뉴론을 갖는 신경망 제어기 설계)

  • 신권석
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.897-900
    • /
    • 1998
  • Through fuzzy logic controller is very useful to many areas, it is difficult to build up the rule-base by experience and trial-error. So, effective self-tuning fuzzy controller for the position control of ball and beam is designed. In this paper, we developed the neural network control system with fuzzy-neuron which conducts the adjustment process for the parameters to satisfy have nonlinear property of the ball and beam system. The proposed algorithm is based on a fuzzy logic control system using a neural network learinign algorithm which is a back-propagation algorithm. This system learn membership functions with input variables. The purpose of the design is to control the position of the ball along the track by manipulating the angualr position of the serve. As a result, it is concluded that the neural network control system with fuzzy-neuron is more effective than the conventional fuzzy system.

  • PDF

A Comparative Study on the Prediction of KOSPI 200 Using Intelligent Approaches

  • Bae, Hyeon;Kim, Sung-Shin;Kim, Hae-Gyun;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock or other economic markets. Most previous experiments used the neural network models for the stock market forecasting. The KOSPI 200 (Korea Composite Stock Price Index 200) is modeled by using different neural networks and fuzzy logic. In this paper, the neural network, the dynamic polynomial neural network (DPNN) and the fuzzy logic employed for the prediction of the KOSPI 200. The prediction results are compared by the root mean squared error (RMSE) and scatter plot, respectively. The results show that the performance of the fuzzy system is little bit worse than that of the DPNN but better than that of the neural network. We can develop the desired fuzzy system by optimization methods.

Neural Network Compensation Technique for Standard PD-Like Fuzzy Controlled Nonlinear Systems

  • Song, Deok-Hee;Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • In this paper, a novel neural fuzzy control method is proposed to control nonlinear systems. A standard PD-like fuzzy controller is designed and used as a main controller for the system. Then a neural network controller is added to the reference trajectories to form a neural-fuzzy control structure and used to compensate for nonlinear effects. Two neural-fuzzy control schemes based on two well-known neural network control schemes, the feedback error learning scheme and the reference compensation technique scheme as well as the standard PD-like fuzzy control are studied. Those schemes are tested to control the angle and the position of the inverted pendulum and their performances are compared.