• Title/Summary/Keyword: Fuzzy Neural

Search Result 1,525, Processing Time 0.026 seconds

A Comparative Study on the Prediction of KOSPI 200 Using Intelligent Approaches

  • Bae, Hyeon;Kim, Sung-Shin;Kim, Hae-Gyun;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock or other economic markets. Most previous experiments used the neural network models for the stock market forecasting. The KOSPI 200 (Korea Composite Stock Price Index 200) is modeled by using different neural networks and fuzzy logic. In this paper, the neural network, the dynamic polynomial neural network (DPNN) and the fuzzy logic employed for the prediction of the KOSPI 200. The prediction results are compared by the root mean squared error (RMSE) and scatter plot, respectively. The results show that the performance of the fuzzy system is little bit worse than that of the DPNN but better than that of the neural network. We can develop the desired fuzzy system by optimization methods.

퍼지신경망에 의한 퍼지회귀분석 : 품질평가 문제에의 응용

  • 권기택
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1996.10a
    • /
    • pp.211-216
    • /
    • 1996
  • This paper propose a fuzzy regression method using fuzzy neural networks when a membership value is attached to each input-output pair. First, an architecture of fuzzy nerual networks with fuzzy weights and fuzzy biases is shown. Next a cost function is defined using the fuzzy output from the fuzzy neural network and the corresponding target output with a membership value.A learning algorithm is derived from the cost function. The derived learning algorithm trains the fuzzy neural network so that the level set of the fuzzy output includes the target output. Last, the proposed method is applied to the quality evaluation problem of injection molding.

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

A learning algorithm of fuzzy neural networks with extended fuzzy weights (확장된 퍼지 가중치를 갖는 퍼지 신경망 학습알고리즘)

  • 손영수;나영남;배상현
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.1
    • /
    • pp.69-81
    • /
    • 1997
  • In this paper, first we propose an architecture of fuzzy neural networks with triangular fuzzy weights. The proposed fuzzy neural network can handle fuzzy input vectors. In both cases, outputs from the fuzzy network are fuzzy vectors. The input-output relation of each unit of the fuzzy neural network is defined by the extention principle of Zadeh. Also we define a cost function for the level sets(i. e., $\alpha$-cuts)of fuzzy outputs and fuzzy targets. Then we derive a learning algorithm from the cost function for adjusting three parameters of each triangular fuzzy weight. Finally, we illustrate our a, pp.oach by computer simulation examples.

  • PDF

Learning of Fuzzy Membership Function by Novel Fuzzy-Neural Networks (새로운 퍼지-신경망을 이용한 퍼지소속함수의 학습)

  • 추연규;탁한호
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.2
    • /
    • pp.47-52
    • /
    • 1998
  • Recently , there have been considerable researches about the fusion of fuzzy logic and neural networks. The propose of thise researches is to combine the advantages of both. After the function of approximation using GMDP (Generalized Multi-Denderite Product)neural network for defuzzification operation of fuzzy controller, a new fuzzy-neural network is proposed. Fuzzy membership function of the proposed fuzzy-neural network can be adjusted by learning in order to be adaptive to the variations of a parameter or the external environment. To show the applicability of the proposed fuzzy-nerual network, the proposed model is applied to a speed control o fDC sevo motor. By the hardware implementation, we obtained the desriable results.

  • PDF

On design of the fuzzy neural controller with a self-organizing map (자기 조정맵을 갖는 퍼지-뉴럴 제어기의 설계)

  • 김성현;조현찬;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.408-411
    • /
    • 1993
  • In this paper, we propose the Fuzzy Neural Controller with a Self-Organizing Map based on the fuzzy relation neuron. The fuzzy ndes expressing the input-output relation of the system are obtained by using the fuzzy relation neuron and updated automatically by means of the generalized delta rule. Also, the proposed method has a capability to express the knowledge acquired from the input-output data in form of fuzzy inferences rules. The learning algorithm of this fuzzy relation neuron is described. The effectiveness of the proposed fuzzy neural controller is illustrated by applying it to a number of test data sets.

  • PDF

Fuzzy Regression Analysis by Fuzzy Neual Networks: Application to Quality Evaluation Problem (퍼지 신경망에 의한 퍼지 회귀분석:품질 평가 문제에의 응용)

  • 권기택
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.7-13
    • /
    • 1999
  • This paper propose a fuzzy regression method using fuzzy neural networks when a membership value is attached to each input -output pair. First, an architecture of fuzzy neural networks with fuzzy weights and fuzzy biases is shown. Next, a cost function is defined using the fuzzy output from the fuzzy neural network and the corresponding target output with a membership value. A learning algorithm is derived from the cost function. The derived learning algorithm trains the fuzzy neural network so that the level set of the fuzzy output includes the target output. Last, the proposed method is applied to the quality evaluation problem of injection molding

  • PDF

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

Rule-Based Fuzzy Polynomial Neural Networks in Modeling Software Process Data

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.321-331
    • /
    • 2003
  • Experimental software datasets describing software projects in terms of their complexity and development time have been the subject of intensive modeling. A number of various modeling methodologies and modeling designs have been proposed including such approaches as neural networks, fuzzy, and fuzzy neural network models. In this study, we introduce the concept of the Rule-based fuzzy polynomial neural networks (RFPNN) as a hybrid modeling architecture and discuss its comprehensive design methodology. The development of the RFPNN dwells on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The architecture of the RFPNN results from a synergistic usage of RFNN and PNN. RFNN contribute to the formation of the premise part of the rule-based structure of the RFPNN. The consequence part of the RFPNN is designed using PNN. We discuss two kinds of RFPNN architectures and propose a comprehensive learning algorithm. In particular, it is shown that this network exhibits a dynamic structure. The experimental results include well-known software data such as the NASA dataset concerning software cost estimation and the one describing software modules of the Medical Imaging System (MIS).