• Title/Summary/Keyword: Fuzzy Membership function

Search Result 687, Processing Time 0.027 seconds

Fuzzy Support Vector Machine for Pattern Classification of Time Series Data of KOSPI200 Index (시계열 자료 코스피200의 패턴분류를 위한 퍼지 서포트 벡타 기계)

  • Lee, S.Y.;Sohn, S.Y.;Kim, C.E.;Lee, Y.B.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.52-56
    • /
    • 2004
  • The Information of classification and estimate about KOSPI200 index`s up and down in the stock market becomes an important standard of decision-making in designing portofolio in futures and option market. Because the coming trend of time series patterns, an economic indicator, is very subordinate to the most recent economic pattern, it is necessary to study the recent patterns most preferentially. This paper compares classification and estimated performance of SVM(Support Vector Machine) and Fuzzy SVM model that are getting into the spotlight in time series analyses, neural net models and various fields. Specially, it proves that Fuzzy SVM is superior by presenting the most suitable dimension to fuzzy membership function that has time series attribute in accordance with learning Data Base.

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

Classification of PVC(Premature Ventricular Contraction) using Radial Basis Function network (Radial Basis Function 네트워크를 이용한 PVC 분류)

  • Lee, J.;Lee, K.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.439-442
    • /
    • 1997
  • In our research, we will extract diagnostic parameters by LPC method and wavelet transform. Then, we will design artificial neural network which is based on RBF that can express input features in terms of fuzzy. Because PVC(Premature Ventricular Contraction) has possibility to cause heart attack, the detection of PVC is a very significant problem. To deal with this problem, LPC method which gives different coefficients or different morphologies and wavelet transform which has superior localization nature of time-frequency, are used to extract effective parameters or classification of normal and PVC. Because RBF network can allocate an input feature to the membership degree of each category, total system will be more flexible.

  • PDF

Gamma correction FCM algorithm with conditional spatial information for image segmentation

  • Liu, Yang;Chen, Haipeng;Shen, Xuanjing;Huang, Yongping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4336-4354
    • /
    • 2018
  • Fuzzy C-means (FCM) algorithm is a most usually technique for medical image segmentation. But conventional FCM fails to perform well enough on magnetic resonance imaging (MRI) data with the noise and intensity inhomogeneity (IIH). In the paper, we propose a Gamma correction conditional FCM algorithm with spatial information (GcsFCM) to solve this problem. Firstly, the pre-processing, Gamma correction, is introduced to enhance the details of images. Secondly, the spatial information is introduced to reduce the effect of noise. Then we introduce the effective neighborhood mechanism into the local space information to improve the robustness for the noise and inhomogeneity. And the mechanism describes the degree of participation in generating local membership values and building clusters. Finally, the adjustment mechanism and the spatial information are combined into the weighted membership function. Experimental results on four image volumes with noise and IIH indicate that the proposed GcsFCM algorithm is more effective and robust to noise and IIH than the FCM, sFCM and csFCM algorithms.

Stabilizing Inverted Pendulum System Using Fuzzy Controller Based on State Variables Combination (상태변수 조합 퍼지 제어기를 이용한 도립진자 시스템의 안정화)

  • Lee, Yun-Hyung;Kim, Jong-Phil;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1104-1110
    • /
    • 2012
  • The inverted pendulum system is a common, interesting control problem that involves many basic elements of control theory. In the early, controls of stabilization for the inverted pendulum system were used classical methods like PD, PID controller. In recently, however, control methods based on modern and intelligent control theory are widely applied. The fuzzy logic controller which is often used in nonlinear control is a little too hard to design due to increasing fuzzy rules rapidly if the given system like inverted pendulum has many state variables. Also, in case the state variables are divided into two parts, two fuzzy controllers are needed in the control system. In this paper, the authors propose FCSC(Fuzzy Controller based on State variables Combination) that reorganized into two new signals depending on the physical meaning of the four state variables of the inverted pendulum system. The proposed method is applied to the inverted pendulum system and simulations are accomplished to illustrate the control performance.

Research on the Structure and Application of Fuzzy Environmental Impact Assessment Model

  • Tien, Shiaw-Wen;Hsneh, Chia-Hsiang;Chung, Yi-Chan;Tsai, Chih-Hung;Yu, Yih-Huei
    • International Journal of Quality Innovation
    • /
    • v.5 no.2
    • /
    • pp.45-62
    • /
    • 2004
  • Any business activities may have impact on environment to a certain extent. Enterprises must find appropriate approaches to measure the impact on these environmental aspects, which can be used as the basis to direct enterprises' efforts to improve the environmental impact. The method used to evaluate significant factors in life cycle assessment standards is the one most commonly used by enterprises in general to measure environmental impact. By this method, the decisive factors of each environmental aspect are given scores according to the preset scoring standard of the organization. The scores are added up for each aspect and ranked to assess major environmental aspects. The drawback of this assessment method, that is, it ignores the degree to which each of these factors affects the environment, results in poor credibility. Therefore, this study attempts to solve some qualitative problems by applying to fuzzy theory, in particular, by identifying appropriate fuzzy numbers through fuzzy sets and membership function. Moreover, the study seeks to obtain a crisp value in the process of defuzzifization in order to make up for the shortfall of the original method in dealing with relative weight of decisive factors and thus increase its applicability and credibility. The department of light production of an electronics company is used as an example in this study to measure environmental aspects by employing both the traditional significant factor method and the fuzzy environmental impact assessment model proposed in this study. Based on verification and comparison of results, the model proposed in this study is more feasible as it reduces partiality in decision-making by taking the relative weights of decisive factors into consideration.

Performance Enhancement of Attitude Estimation using Adaptive Fuzzy-Kalman Filter (적응형 퍼지-칼만 필터를 이용한 자세추정 성능향상)

  • Kim, Su-Dae;Baek, Gyeong-Dong;Kim, Tae-Rim;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2511-2520
    • /
    • 2011
  • This paper describes the parameter adjustment method of fuzzy membership function to improve the performance of multi-sensor fusion system using adaptive fuzzy-Kalman filter and cross-validation. The adaptive fuzzy-Kanlman filter has two input parameters, variation of accelerometer measurements and residual error of Kalman filter. The filter estimates system noise R and measurement noise Q, then changes the Kalman gain. To evaluate proposed adaptive fuzzy-Kalman filter, we make the two-axis AHRS(Attitude Heading Reference System) using fusion of an accelerometer and a gyro sensor. Then we verified its performance by comparing to NAV420CA-100 to be used in various fields of airborne, marine and land applications.

Fuzzy-based Threshold Controlling Method for ART1 Clustering in GPCR Classification (GPCR 분류에서 ART1 군집화를 위한 퍼지기반 임계값 제어 기법)

  • Cho, Kyu-Cheol;Ma, Yong-Beom;Lee, Jong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.167-175
    • /
    • 2007
  • Fuzzy logic is used to represent qualitative knowledge and provides interpretability to a controlling system model in bioinformatics. This paper focuses on a bioinformatics data classification which is an important bioinformatics application. This paper reviews the two traditional controlling system models The sequence-based threshold controller have problems of optimal range decision for threshold readjustment and long processing time for optimal threshold induction. And the binary-based threshold controller does not guarantee for early system stability in the GPCR data classification for optimal threshold induction. To solve these problems, we proposes a fuzzy-based threshold controller for ART1 clustering in GPCR classification. We implement the proposed method and measure processing time by changing an induction recognition success rate and a classification threshold value. And, we compares the proposed method with the sequence-based threshold controller and the binary-based threshold controller The fuzzy-based threshold controller continuously readjusts threshold values with membership function of the previous recognition success rate. The fuzzy-based threshold controller keeps system stability and improves classification system efficiency in GPCR classification.

  • PDF

A New Similarity Measure based on RMF and It s Application to Linguistic Approximation (상대적 소수 함수에 기반을 둔 새로운 유사성 측도와 언어 근사에의 응용)

  • Choe, Dae-Yeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.463-468
    • /
    • 2001
  • We propose a new similarity measure based on relative membership function (RMF). In this paper, the RMF is suggested to represent the relativity between fuzzy subsets easily. Since the shape of the RMF is determined according to the values of its parameters, we can easily represent the relativity between fuzzy subsets by adjusting only the values of its parameters. Hence, we can easily reflect the relativity among individuals or cultural differences when we represent the subjectivity by using the fuzzy subsets. In this case, these parameters may be regarded as feature points for determining the structure of fuzzy subset. In the sequel, the degree of similarity between fuzzy subsets can be quickly computed by using the parameters of the RMF. We use Euclidean distance to compute the degree of similarity between fuzzy subsets represented by the RMF. In the meantime, we present a new linguistic approximation method as an application area of the proposed similarity measure and show its numerical example.

  • PDF