• 제목/요약/키워드: Fuzzy Logic Model

검색결과 698건 처리시간 0.023초

Effects of Global Capabilities of Small and Medium Businesses on Their Competitive Advantage and Business Management Performances

  • Kim, Sang-Dae;Jeon, In-Oh
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권1호
    • /
    • pp.52-58
    • /
    • 2016
  • This paper categorized Korean small and medium businesses' global capabilities based on the preceding studies about the global capabilities and then, examined how their global capabilities would affect their competitive advantages and business management performances. As a result of testing the research model, it was found that the small and medium businesses' global capabilities had some significant effects on their competitive advantage (p<.001). On the other hand, the global capabilities had some positive effects on the business management performances and the mediating effects were significant (p>.05), which means that the competitive advantage has some mediating effects on the correlation between the global capabilities and the business management performances. Accordingly it was possible to analyze the correlation between global capabilities of small and medium businesses and their competitive advantage and thereby, provide for an opportunity to shift the paradigm of the global competition strategies.

An Optimal Clustering using Hybrid Self Organizing Map

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.10-14
    • /
    • 2006
  • Many clustering methods have been studied. For the most part of these methods may be needed to determine the number of clusters. But, there are few methods for determining the number of population clusters objectively. It is difficult to determine the cluster size. In general, the number of clusters is decided by subjectively prior knowledge. Because the results of clustering depend on the number of clusters, it must be determined seriously. In this paper, we propose an efficient method for determining the number of clusters using hybrid' self organizing map and new criterion for evaluating the clustering result. In the experiment, we verify our model to compare other clustering methods using the data sets from UCI machine learning repository.

Evaluating Mental State of Final Year Students Based on POMS Questionnaire and HRV Signal

  • Handri, Santoso;Nomura, Shusaku;Nakamura, Kazuo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.37-42
    • /
    • 2010
  • Final year students are normally encountering high pressing in their study. In view of this fact, this research focuses on determining mental states condition of college student in final year based on the psycho-physiological information. The experiments were conducted in two times, i.e., prior- and post- graduation seminar examination. The early results indicated that the student profile of mood states (POMS) in prior final graduation seminar showed higher scores than students in post final graduation seminar. Thus, in this research, relation between biosignal representing by heart rate variability (HRV) and questionnaire responses were evaluated by hidden Markov model (HMM) and neural networks (NN).

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.

Discriminative Training of Sequence Taggers via Local Feature Matching

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.209-215
    • /
    • 2014
  • Sequence tagging is the task of predicting frame-wise labels for a given input sequence and has important applications to diverse domains. Conventional methods such as maximum likelihood (ML) learning matches global features in empirical and model distributions, rather than local features, which directly translates into frame-wise prediction errors. Recent probabilistic sequence models such as conditional random fields (CRFs) have achieved great success in a variety of situations. In this paper, we introduce a novel discriminative CRF learning algorithm to minimize local feature mismatches. Unlike overall data fitting originating from global feature matching in ML learning, our approach reduces the total error over all frames in a sequence. We also provide an efficient gradient-based learning method via gradient forward-backward recursion, which requires the same computational complexity as ML learning. For several real-world sequence tagging problems, we empirically demonstrate that the proposed learning algorithm achieves significantly more accurate prediction performance than standard estimators.

신경 회로망을 이용한 BLDD 모터의 속도 적응 제어기 (Speed Control of BLDD Motor Using Neural Network based Adaptive Controller)

  • 김창균;이중휘;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.714-716
    • /
    • 1995
  • This Paper presents a novel and systematic approach to a self-learning controller. The proposed controller is built on a neural network consisting of a standard back propagation (BNN) and approxinate reasoning (AR). The fuzzy inference and knowledge representation are carried out by the neural network structure and computing, instead of logic inference. An architecture similar to that used by traditional model reference adaptive control system (MRAC) is employed.

  • PDF

기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터 (DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.118-121
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seliously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.

A Reinforcement Learning with CMAC

  • Kwon, Sung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.271-276
    • /
    • 2006
  • To implement a generalization of value functions in Adaptive Search Element (ASE)-reinforcement learning, CMAC (Cerebellar Model Articulation Controller) is integrated into ASE controller. ASE-reinforcement learning scheme is briefly studied to discuss how CMAC is integrated into ASE controller. Neighbourhood Sequential Training for CMAC is utilized to establish the look-up table and to produce discrete control outputs. In computer simulation, an ASE controller and a couple of ASE-CMAC neural network are trained to balance the inverted pendulum on a cart. The number of trials until the controllers are established and the learning performance of the controllers are evaluated to find that generalization ability of the CMAC improves the speed of the ASE-reinforcement learning enough to realize the cartpole control system.

Design of Genetic Algorithm-based Parking System for an Autonomous Vehicle

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.275-280
    • /
    • 2009
  • A Genetic Algorithm (GA) is a kind of search techniques used to find exact or approximate solutions to optimization and searching problems. This paper discusses the design of a genetic algorithm-based intelligent parking system. This is a search strategy based on the model of evolution to solve the problem of parking systems. A genetic algorithm for an optimal solution is used to find a series of optimal angles of the moving vehicle at a parking space autonomously. This algorithm makes the planning simpler and the movement more effective. At last we present some simulation results.

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.