• Title/Summary/Keyword: Fuzzy Logic Method

Search Result 1,179, Processing Time 0.058 seconds

Design of Solving Similarity Recognition for Cloth Products Based on Fuzzy Logic and Particle Swarm Optimization Algorithm

  • Chang, Bae-Muu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4987-5005
    • /
    • 2017
  • This paper introduces a new method to solve Similarity Recognition for Cloth Products, which is based on Fuzzy logic and Particle swarm optimization algorithm. For convenience, it is called the SRCPFP method hereafter. In this paper, the SRCPFP method combines Fuzzy Logic (FL) and Particle Swarm Optimization (PSO) algorithm to solve similarity recognition for cloth products. First, it establishes three features, length, thickness, and temperature resistance, respectively, for each cloth product. Subsequently, these three features are engaged to construct a Fuzzy Inference System (FIS) which can find out the similarity between a query cloth and each sampling cloth in the cloth database D. At the same time, the FIS integrated with the PSO algorithm can effectively search for near optimal parameters of membership functions in eight fuzzy rules of the FIS for the above similarities. Finally, experimental results represent that the SRCPFP method can realize a satisfying recognition performance and outperform other well-known methods for similarity recognition under considerations here.

Hybrid fuzzy model to predict strength and optimum compositions of natural Alumina-Silica-based geopolymers

  • Nadiri, Ata Allah;Asadi, Somayeh;Babaizadeh, Hamed;Naderi, Keivan
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.103-110
    • /
    • 2018
  • This study introduces the supervised committee fuzzy model as a hybrid fuzzy model to predict compressive strength (CS) of geopolymers prepared from alumina-silica products. For this purpose, more than 50 experimental data that evaluated the effect of $Al_2O_3/SiO_2$, $Na_2O/Al_2O_3$, $Na_2O/H_2O$ and Na/[Na+K] on (CS) of geopolymers were collected from the literature. Then, three different Fuzzy Logic (FL) models (Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL)) were adopted to overcome the inherent uncertainty of geochemical parameters and to predict CS. After validating the model, it was found that the SFL model is superior to MFL and LFL models, but each of the FL models has advantages to predict CS. Therefore, to achieve the optimal performance, the supervised committee fuzzy logic (SCFL) model was developed as a hybrid method to combine the benefits of individual FL models. The SCFL employs an artificial neural network (ANN) model to re-predict the CS of three FL model predictions. The results also show significant fitting improvement in comparison with individual FL models.

Hand Gesture Recognition Using an Infrared Proximity Sensor Array

  • Batchuluun, Ganbayar;Odgerel, Bayanmunkh;Lee, Chang Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.186-191
    • /
    • 2015
  • Hand gesture is the most common tool used to interact with and control various electronic devices. In this paper, we propose a novel hand gesture recognition method using fuzzy logic based classification with a new type of sensor array. In some cases, feature patterns of hand gesture signals cannot be uniquely distinguished and recognized when people perform the same gesture in different ways. Moreover, differences in the hand shape and skeletal articulation of the arm influence to the process. Manifold features were extracted, and efficient features, which make gestures distinguishable, were selected. However, there exist similar feature patterns across different hand gestures, and fuzzy logic is applied to classify them. Fuzzy rules are defined based on the many feature patterns of the input signal. An adaptive neural fuzzy inference system was used to generate fuzzy rules automatically for classifying hand gestures using low number of feature patterns as input. In addition, emotion expression was conducted after the hand gesture recognition for resultant human-robot interaction. Our proposed method was tested with many hand gesture datasets and validated with different evaluation metrics. Experimental results show that our method detects more hand gestures as compared to the other existing methods with robust hand gesture recognition and corresponding emotion expressions, in real time.

FPGA implementation of fuzzy controller using product-sum inference method (Product-sum 추론방식을 이용한 퍼지제어기의 FPGA 구현)

  • 김재희;박준열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.520-523
    • /
    • 1997
  • This paper presents FPGA implementation of fuzzy controller using Product-Sum inference method. Product-Sum inference method has much better performance than other inference methods. This fuzzy controller is composed of several digital modules, e.g. fuzzifier, rule base, adder, multiplier, select center and divider, and is operated by error and error variation. We synthesized the fuzzy controller and performed wave simulation using Xilinx VHDL tool(ViewLogic, ViewSim).

  • PDF

An Improved Method of Method of Fuzzy Approximate Reasoning by Combining Self-Organizing Feature Map and Fuzzy Logic (자기조직화 특성지도와 퍼지로직을 결합한 개선된 형태의 퍼지근사추론에 관한 연구)

  • 이건창;조형래
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.143-159
    • /
    • 1998
  • This paper proposes a new type of fuzzy approximate reasoning method that combines a self organizing feature map and a fuzzy logic. Previous methods considered only input part to determine the number of fuzzy rules, while this paper considers both input and output parts simultaneously. Our approach proved to improve the inference performance. We also developed a new index for avoiding overlearning which guarantees more accurate results. Experimental results showed that our approach surpasses the performance of Takagi & Hayashi (1991) approach.

  • PDF

Development of Intelligently Unmanned Combine Using Fuzzy Logic Control -(Graphic Simulation)-

  • N.H.Ki;Cho, S.I.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1264-1272
    • /
    • 1993
  • The software for unmanned control of three row typed rice combine has been developed using fuzzy logic. Three fuzzy variables were used : operating status of combine, steering, and speed. Eleven fuzzy rules were constructed and the eleven linguistic variables were used for the fuzzy rules. Six sensors were use of to get input values and sensor input values were quantified into 11 levels. The fuzzy output was infered with fuzzy inferrence which uses the correlation product encoding , and it must have been defuzzified by the method of center of gravity to use it for the control. The result of performance test using graphic simulation showed that the intelligently unmanned control of a rice combine was possible using fuzzy logic control.

  • PDF

Optimization of Fuzzy Logic Controller Using Genetic Algorithm (유전 알고리듬을 이용한 퍼지 제어기의 설계 자동화 및 매개 변수 최적화)

  • Chang, Wook;Son, You-Seok;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.65-67
    • /
    • 1996
  • This paper presents the automatic construction and parameter optimization technique for the fuzzy logic controller using genetic algorithm. In general the design of fuzzy controller has difficulties in the acquisition of expert's knowledge and relies to a great extent on empirical and heuristic knowledge which, in many cases, cannot be objectively justified. Therefor the performance of the controller can be degraded in the case of plant parameter variations or unpredictable incident which the designer may lave ignored. And fuzzy logic controller parameters elicited form the expert may not be global. Some of these problems can be resolved by application of genetic algorithm. Finally, we provides the second order dead time plant to evaluate the feasibility and generality of our proposed method. Comparison shows that the proposed method can produce a fuzzy logic controller with higher accuracy and a smaller number of fuzzy roles than manually billed fuzzy logic controller.

  • PDF

Optimal Fuzzy Control of Parallel Hybrid Electric Vehicles

  • Farrokhi, M.;Mohebbi, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.910-914
    • /
    • 2005
  • In this paper an optimal method based on fuzzy logic for controlling parallel hybrid electric vehicles is presented. In parallel hybrid electric vehicles the required torque for deriving and operating the on-board accessories is generated by a combination of internal-combustion engine and an electric motor. The powersharing between the internal combustion engine and the electric motor is the key point for efficient driving. This is a highly nonlinear and time varying plant and its control strategy will be implemented with the use of fuzzy logic controller. The fuzzy logic controller will be designed based on the state of charge of batteries and the desired torque for driving. The output of controller controls the throttle of the combustion engine. The main contribution of this paper is the development of an optimal control based on fuzzy logic, which maximizes the output torque of the vehicle while minimizing fuel consumed by the combustion engine.

  • PDF

Comparative Study on Type-2 and Type-1 TSK FLS. (Type-2와 Type-1 TSK FLS의 비교 연구)

  • Ji, Gwang-Hui;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.321-324
    • /
    • 2008
  • Type-2 퍼지 집합은 Type-1 퍼지 집합에서는 다루기 어려운 언어적인 불확실성을 더욱 효과적으로 다룰 수 있다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 Mamdani 모델과 함께 가장 널리 사용되는 FLS이다. 본 연구의 Interval Type-2 TSK FLS 모델은 전반부에서 Type-2 퍼지 집합을 이용하고 후반부는 계수가 상수인 1차식을 사용한다. 전반부의 파라미터는 오류역전파 방법(Back-propagation)을 통한 학습으로 결정되고, 후반부 파라미터(계수)들은 Least squre method(LSM)를 사용하여 결정된 값을 사용하여 모델을 구축한다. 본 논문에서는 Type-1 TSK FLS과 Type-2 TSK FLS의 성능을 가스로 공정 데이터를 적용하여 비교 분석한다. 또한 랜덤 화이트 가우시안 노이즈를 추가한 테스트 데이터를 사용하여 노이즈에 대한 성능을 분석한다.

  • PDF

Feedback linearization control of a nonlinear system using genetic algorithms and fuzzy logic system (유전 알고리듬과 퍼지논리 시스템을 이용한 비선형 시스템의 피드백 선형화 제어)

  • 최영길;김성현;심귀보;전홍태
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.46-54
    • /
    • 1997
  • In this paper, we psropose the feedback linearization technique for a nonlinear system using genetic algorithms (GAs) and fuzzy logic system. The proposed control scheme approximates the nonlinear term of a nonlinear system using the fuzzy logic system and computes the control input for cancelling the nonlinear term. Then in the fuzzy logic system, the number and shape of membership function of the premise aprt will be tuned to minimize the control error boundary using GAs. And the parameters of the consequence of fuzzy rule will be tuned by the adaptive laws based on lyapunov stability theory in order to guarantee the closed loop stability of control system. The evolution of fuzzy logic system is processed during the on-line adaptive control. The effectiveness of proposed method will be demonstrated by computer simulation of simple nonlinear sytem.

  • PDF