• Title/Summary/Keyword: Fuzzy Learning

Search Result 982, Processing Time 0.029 seconds

Neuro-Fuzzy Modeling Learning method based on Clustering (클러스터링 기반 뉴로-퍼지 모델링 학습)

  • Kim S. S.;Kwak K. C.;Lee D. J.;Kim S. S.;Ryu J, W.;Kim J. S.;Kim Y. T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.289-292
    • /
    • 2005
  • 본 논문에서는 클러스터링과 뉴로-퍼지 모델링을 동시에 실시하는 학습 기법을 제안하였다. 클러스터링을 이용하여 뉴로-퍼지 모델링을 실시하는 일반적인 경우, 클러스터링 학습을 실시한 후 학습된 파라미터를 뉴로-퍼지 모델의 초기 파라미터로 설정하고 모델을 다시 학습하는 방법을 취한다. 즉 클러스터링에서 클러스터의 수를 구하고 파라미터를 최적화함으로써 초기 구조동정과 파라미터 동정을 실시하며 이를 다시 뉴로-퍼지 모델에서 세부적인 파라미터 동정을 실시하는 것이다. 또한 모델에서의 학습은 출력데이터의 오차를 이용한 오차미분기반 학습으로 전제부 소속함수 파라미터를 수정하는 방법을 이용한다. 이 경우 클러스터링의 영향과 모델의 영향이 각각 별개로 고려될 수 있다. 따라서 본 논문에서는 클러스터링을 전제부 소속함수로 부여하고 클러스터링의 학습에 뉴로-퍼지 모델을 이용하면서 또한 모델의 학습에 클러스터링을 직접 적용하는 클러스터링 기반 뉴로-퍼지 모델링을 제안하였으며 이 경우 클러스터링의 학습과 모델의 학습이 동시에 이루어지며 뉴로-퍼지 모델에서 클러스터링의 효과를 직접적으로 확인할 수 있다. 제안된 방법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Human Tracking using Multiple-Camera-Based Global Color Model in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2006
  • We propose an global color model based method for tracking motions of multiple human using a networked multiple-camera system in intelligent space as a human-robot coexistent system. An intelligent space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of intelligent space as well. One of the main goals of intelligent space is to assist humans and to do different services for them. In order to be capable of doing that, intelligent space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and intelligent space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Maximum Torque Control of IPMSM Drive with ALM-FNN Controller (ALM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.110-114
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In this paper maximum torque control of IPMSM drive using artificial intelligent(AI) controller is proposed. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using adaptive learning mechanism fuzzy neural network(ALM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the experimental results to verify the effectiveness of AI controller.

A Development of Neurofuzzy System for a Conceptual Design of Ship (선박의 개념 설계 지원용 뉴로 퍼지 시스템 개발)

  • Soo-Young Kim;Hyun-Cheol Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.79-87
    • /
    • 1998
  • The purpose of this paper is to develope a neurofuzzy system for a ship design which can determine efficiently design values e.g. principal dimensions and hull factors in a conceptual design. The neurofuzzy system for a ship design(NeFHull) applies a information about given input-output data to fuzzy theories and deals these fuzzificated values with neural networks, e.g. first, redefines normalized input-output data ad membership functions and then executes these fuzzficated information with backpropagation neural networks. We use a hybrid learning algorithm in the training of neural networks and examine the usefulness of suggested method through mathematical and mechanical examples.

  • PDF

A Comparative Study of Estimation by Analogy using Data Mining Techniques

  • Nagpal, Geeta;Uddin, Moin;Kaur, Arvinder
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.621-652
    • /
    • 2012
  • Software Estimations provide an inclusive set of directives for software project developers, project managers, and the management in order to produce more realistic estimates based on deficient, uncertain, and noisy data. A range of estimation models are being explored in the industry, as well as in academia, for research purposes but choosing the best model is quite intricate. Estimation by Analogy (EbA) is a form of case based reasoning, which uses fuzzy logic, grey system theory or machine-learning techniques, etc. for optimization. This research compares the estimation accuracy of some conventional data mining models with a hybrid model. Different data mining models are under consideration, including linear regression models like the ordinary least square and ridge regression, and nonlinear models like neural networks, support vector machines, and multivariate adaptive regression splines, etc. A precise and comprehensible predictive model based on the integration of GRA and regression has been introduced and compared. Empirical results have shown that regression when used with GRA gives outstanding results; indicating that the methodology has great potential and can be used as a candidate approach for software effort estimation.

High Performance Control of IPMSM using AIPI Controller (AIPI 제어기를 이용한 IPMSM의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.225-227
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed artificial intelligent-PI(AIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

Middleware for Context-Aware Ubiquitous Computing

  • Hung Q.;Sungyoung
    • Korea Information Processing Society Review
    • /
    • v.11 no.6
    • /
    • pp.56-75
    • /
    • 2004
  • In this article we address some system characteristics and challenging issues in developing Context-aware Middleware for Ubiquitous Computing. The functionalities of a Context-aware Middleware includes gathering context data from hardware/software sensors, reasoning and inferring high-level context data, and disseminating/delivering appropriate context data to interested applications/services. The Middleware should facilitate the query, aggregation, and discovery for the contexts, as well as facilities to specify their privacy policy. Following a formal context model using ontology would enable syntactic and semantic interoperability, and knowledge sharing between different domains. Moddleware should also provide different kinds of context classification mechanical as pluggable modules, including rules written in different types of logic (first order logic, description logic, temporal/spatial logic, fuzzy logic, etc.) as well as machine-learning mechanical (supervised and unsupervised classifiers). Different mechanisms have different power, expressiveness and decidability properties, and system developers can choose the appropriate mechanism that best meets the reasoning requirements of each context. And finally, to promote the context-trigger actions in application level, it is important to provide a uniform and platform-independent interface for applications to express their need for different context data without knowing how that data is acquired. The action could involve adapting to the new environment, notifying the user, communicating with another device to exchange information, or performing any other task.

  • PDF

Development of Peak Power Demand Forecasting Model for Special-Day using ELM (ELM을 이용한 특수일 최대 전력수요 예측 모델 개발)

  • Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.74-78
    • /
    • 2015
  • With the improvement of living standards and economic development, electricity consumption continues to grow. The electricity is a special energy which is hard to store, so its supply must be consistent with the demand. The objective of electricity demand forecasting is to make best use of electricity energy and provide balance between supply and demand. Hence, it is very important work to forecast electricity demand with higher precision. So, various forecasting methods have been developed. They can be divided into five broad categories such as time series models, regression based model, artificial intelligence techniques and fuzzy logic method without considering special-day effects. Electricity demand patterns on holidays can be often idiosyncratic and cause significant forecasting errors. Such effects are known as special-day effects and are recognized as an important issue in determining electricity demand data. In this research, we developed the power demand forecasting method using ELM(Extreme Learning Machine) for special day, particularly, lunar new year and Chuseok holiday.

Maximum Torque Control of IPMSM with ALM-FNN Controller (ALM-FNN 제어기에 의한 IPMSM의 최대토크 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Park, Bung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.198-201
    • /
    • 2005
  • The paper is proposed maximum torque control of IPMSM drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $^i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verily the effectiveness of the ALM-FNN and ANN controller.

  • PDF

A study of intelligent system to improve the accuracy of pattern recognition (패턴인식의 정화성을 향상하기 위한 지능시스템 연구)

  • Chung, Sung-Boo;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1291-1300
    • /
    • 2008
  • In this paper, we propose a intelligent system to improve the accuracy of pattern recognition. The proposed intelligent system consist in SOFM, LVQ and FCM algorithm. We are confirmed the effectiveness of the proposed intelligent system through the several experiments that classify Fisher's Iris data and face image data that offered by ORL of Cambridge Univ. and EMG data. As the results of experiments, the proposed intelligent system has better accuracy of pattern recognition than general LVQ.