• 제목/요약/키워드: Fuzzy Inference system

검색결과 942건 처리시간 0.039초

Effective Design of Inference Rule for Shape Classification

  • Kim, Yoon-Ho;Lee, Sang-Sock;Lee, Joo-Shin
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.417-422
    • /
    • 1998
  • This paper presents a method of object classification from dynamic image based on fuzzy inference algorithm which is suitable for low speed such as, conveyor, uninhabited transportation. At first, by using feature parameters of moving object, fuzzy if - then rule that can be able to adapt the wide variety of surroundings is developed. Secondly, implication function for fuzzy inference are compared with respect the proposed algorithm. Simulation results are presented to testify the performance and applicability of the proposed system.

  • PDF

2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계 (Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

BLDC 서보 모터를 위한 적응 퍼지 슬라이딩 모드 제어기의 설계 (Adaptive fuzzy sliding-mode control for BLDC Servo Mortor)

  • 박수식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.624-627
    • /
    • 2000
  • An adaptive fuzzy sliding-mode control system which combines the merits of sliding-mode control the fuzzy inference mechanism and the adaptive algorithm is proposed. A fuzzy sliding-mode controller is investigated in which a simple fuzzy inference mechamism is used to estimate the upper bound of uncertainties., The fuzzy inference mechanism with centre adaptation of membership functions is investigated to estimate the optimal bound of uncertainties.

  • PDF

Self-Organized Reinforcement Learning Using Fuzzy Inference for Stochastic Gradient Ascent Method

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.96.3-96
    • /
    • 2001
  • In this paper the self-organized and fuzzy inference used stochastic gradient ascent method is proposed. Fuzzy rule and fuzzy set increase as occasion demands autonomously according to the observation information. And two rules(or two fuzzy sets)becoming to be similar each other as progress of learning are unified. This unification causes the reduction of a number of parameters and learning time. Using fuzzy inference and making a rule with an appropriate state division, our proposed method makes it possible to construct a robust reinforcement learning system.

  • PDF

뉴로-퍼지 알고리즘을 이용한 점용접재의 강도추론 기술 (The Quality Assurance Technique of Resistance Spot Welding Pieces using Neuro-Fuzzy Algorithm)

  • 김주석;주연준;이상룡
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.141-151
    • /
    • 1999
  • The resistance Spot Welding is widely used in the field of assembling the plates. However we don't still have any satisfactory solution, which is non-destructive quality evaluation in real-time or on-line, against it. Moreover, even though the rate of welding under the condition of expulsion has been high until now, quality control of welding against expulsion hasn't still been established. In this paper, it was proposed on the quality assurance technique of resistance spot welding pieces using Neuro-Fuzzy algorithm. Four parameters from electrode separation signal in the case of non-expulsion, and dynamic resistance patterns in the case of expulsion are selected as fuzzy input parameters. The parameters consist of Fuzzy Inference System are determined through Neuro-Learning algorithm. And then, fuzzy Inference System is constructed. It was confirmed that the fuzzy inference values of strength have within ${\pm}$4% error specimen in comparison with real strength for the total strength range, and the specimen percent having within ${\pm}$1% error was 88.8%. According to KS(Korean Industrial Standard), tensile-shear strength limit for electric coated of zinc is 400kgf/mm2. Judging to the quality of welding is good or bad, according to this criterion and the results of inference, the probability of misjudgement that good quality is valuated into poor one was 0.43%, on contrary it was 2.59%. Finally, the proposed Neuro-Fuzzy Inference System can infer the tensile-shear strength of resistance spot welding pieces with high performance for all cases-non-expulsion and expulsion. And On-Line Welding Quality Inspection System will be realized sooner or later.

  • PDF

뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계 (Design of IMC Controller for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System)

  • 강정규;김정수;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.236-236
    • /
    • 2000
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC systems is their robustness with respect to a model mismatch and disturbances. But it was difficult to apply for nonlinear systems. Adaptive Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to identify a nonlinear dynamical systems. In this paper, we propose new IMC design method using adaptive neuro-fuzzy inference system for nonlinear plant. Numerical simulation results show that proposed IMC design method has good performance than classical PID controller.

  • PDF

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권3호
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

퍼지 클러스터를 이용한 비선형 추론 (Nonlinear Inference Using Fuzzy Cluster)

  • 박건준;이동윤
    • 디지털융복합연구
    • /
    • 제14권1호
    • /
    • pp.203-209
    • /
    • 2016
  • 본 논문에서는 퍼지 클러스터를 이용한 비선형 추론을 위한 퍼지 추론 시스템을 소개한다. 전형적으로, 비선형 추론을 위한 퍼지 규칙의 생성은 일반적으로 입력 벡터 차원이 증가하면 규칙의 수가 지수적으로 증가하게 된다. 이러한 문제점을 해결하기 위해, 퍼지 클러스터를 표현할 수 있는 퍼지 클러스터링 알고리즘을 이용하여 입력 벡터 공간을 분산 형태로 분할하여 퍼지 모델의 규칙을 설계한다. 이러한 방법으로 복잡하고 비선형적인 공정을 퍼지 모델링 할 수 있다. 퍼지 규칙의 전반부는 퍼지 클러스터를 갖는 FCM 클러스터링 알고리즘에 의해 결정된다. 퍼지 규칙의 후반부는 4가지 형태의 다항식 함수의 형태를 가지며, 각 규칙의 후반부 파라미터들은 표준 최소자승법을 이용함으로써 추정된다. 그리고 비선형 공정의 특성 및 성능을 평가하기 위하여 비선형 공정으로 많이 이용되고 있는 데이터를 이용한다. 실험 결과는 비선형 추론이 가능하다는 것을 보여준다.

차 영상을 통한 퍼지 추론 기반 열화 진단 시스템 설계 (Design of Fuzzy Inference-based Deterioration Diagnosis System through Different Image)

  • 김종범;최우용;오성권;김영일
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.57-62
    • /
    • 2015
  • 본 논문에서는 전기설비들의 신속하고 효율적인 진단을 위해 차 영상을 통한 퍼지 추론 기반 열화 진단 시스템을 설계한다. 전기 기기의 열화 진단이 시작 되면 처음 정상 상태의 온도와 비교하여 이상 영역을 검출한다. 검출된 영역은 퍼지 추론 알고리즘을 사용하여 열화를 진단한다. 퍼지 추론 알고리즘에서, 퍼지 규칙은 If-then형식으로 정의되고, look-up 테이블로 규칙을 표현한다. 온도와 온도의 변화량을 입력 변수로 사용한다. 입력변수의 퍼지수를 표현하기 위해 삼각형 멤버쉽 함수를 사용하였으며, 출력변수에는 singleton 멤버쉽 함수를 사용하였다. 최종 출력은 퍼지 추론 방법의 무게 중심법을 사용하여 계산한다. 전기 설비로부터 취득한 실험 데이터는 제안된 시스템의 성능을 평가하기 위하 사용한다.