• Title/Summary/Keyword: Fuzzy Inference system

Search Result 942, Processing Time 0.032 seconds

A Technology-based New Business Planning Model ; Fuzzy Inference Systems Approach (신규사업의 성공판정을 위한 퍼지추론모형)

  • 권철신;김태현
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.246-249
    • /
    • 2001
  • In this study we propose a technology selection model, which captures technology seeds for new business area by a fuzzy structural modeling method and then, design a model, which evaluates the validity of New Business Development plans for the selected technology seeds with regard to the properties of manufacturing, product, market, and economy as well. Finally, a fuzzy inference system is designed in order to decide the degree of success of New Business Development plans based on the preceding validity evaluation.

  • PDF

A Multivariable Fuzzy Control System with a Coorinator

  • Lee, Pyeong-Gi-;Jeon, Gi-Joon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1141-1144
    • /
    • 1993
  • For the design of multivariable fuzzy control systems the decomposition of control rules is preferable since it alleviates the complexity of the problem. In some systems, however, inference error of the Gupta's decomposition method is inevitable because of its approximate nature. In this paper, we propose a new multivariable fuzzy controller with a coordinator which can reduce the inference error of the decomposition method by using an index of applicability.

  • PDF

Total Ordering by Fuzzy Inference

  • Hyung, Lee-Kwang;Lee, Do-Heon;Lee, Keon-Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.21-24
    • /
    • 1995
  • Fuzzy inference method is introduced to order totally a partiallyordered system. When there there are more than one order indices and fuzzy order rules, the proposed method provides one order index by mixing them.

  • PDF

Tuning of multivariable PID controller using Fuzzy logic (퍼지추론에 의한 다변수용 PID제어기 튜우닝)

  • Kim, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1092-1095
    • /
    • 1996
  • In this paper The tuning of PID controller for multi input-output is studied by using fuzzy inference. State of coupling is estimated by fuzzy inference, its results is used for tuning of PID controller to get optimum P,I,D parameter with regard to state of coupling. This method is simulated to Turbo-generating system with $2{\times}2$ multi input-output and made with electronic circuit, its response is very satisfactory.

  • PDF

Performance Improvement of an Extended Kalman Filter Using Simplified Indirect Inference Method Fuzzy Logic (간편 간접추론 방식의 퍼지논리에 의한 확장 칼만필터의 성능 향상)

  • Chai, Chang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2016
  • In order to improve the performance of an extended Kalman filter, a simplified indirect inference method (SIIM) fuzzy logic system (FLS) is proposed. The proposed FLS is composed of two fuzzy input variables, four fuzzy rules and one fuzzy output. Two normalized fuzzy input variables are the variance between the trace of a prior and a posterior covariance matrix, and the residual error of a Kalman algorithm. One fuzzy output variable is the weighting factor to adjust for the Kalman gain. There is no need to decide the number and the membership function of input variables, because we employ the normalized monotone increasing/decreasing function. The single parameter to be determined is the magnitude of a universe of discourse in the output variable. The structure of the proposed FLS is simple and easy to apply to various nonlinear state estimation problems. The simulation results show that the proposed FLS has strong adaptability to estimate the states of the incoming/outgoing moving objects, and outperforms the conventional extended Kalman filter algorithm by providing solutions that are more accurate.

A Study On Optimization Of Fuzzy-Neural Network Using Clustering Method And Genetic Algorithm (클러스터링 기법 및 유전자 알고리즘을 이용한 퍼지 뉴럴 네트워크 모델의 최적화에 관한 연구)

  • Park, Chun-Seong;Yoon, Ki-Chan;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.566-568
    • /
    • 1998
  • In this paper, we suggest a optimal design method of Fuzzy-Neural Networks model for complex and nonlinear systems. FNNs have the stucture of fusion of both fuzzy inference with linguistic variables and Neural Networks. The network structure uses the simpified inference as fuzzy inference system and the BP algorithm as learning procedure. And we use a clustering algorithm to find initial parameters of membership function. The parameters such as membership functions, learning rates and momentum coefficients are easily adjusted using the genetic algorithms. Also, the performance index with weighted value is introduced to achieve a meaningful balance between approximation and generalization abilities of the model. To evaluate the performance index, we use the time series data for gas furnace and the sewage treatment process.

  • PDF

Design of Learning Fuzzy Controller by the Self-Tuning Algorithm for Equipment Systems (설비시스템을 위한 자기동조기법에 의한 학습 FUZZY 제어기 설계)

  • Lee, Seung
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-77
    • /
    • 1995
  • This paper deals with design method of learning fuzzy controller for control of an unknown nonlinear plant using the self-tuning algorithm of fuzzy inference rules. In this method the fuzzy identification model obtained that the joined identification model of nonlinear part and linear identification model of linear part by fuzzy inference systems. This fuzzy identification model ordered self-tuning by Decent method so as to be servile to nonlinear plant. A the end, designed learning fuzzy controller of fuzzy identification model have learning structure to model reference adaptive system. The simulation results show that th suggested identification and learning control schemes are practically feasible and effective.

  • PDF

A Study on the Neuro-Fuzzy Control and Its Application

  • So, Myung-Ok;Yoo, Heui-Han;Jin, Sun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.228-236
    • /
    • 2004
  • In this paper. we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feed forward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand. feed forward neural networks provide salient features. such as learning and parallelism. In the proposed neuro-fuzzy controller. the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error back propagation algorithm as a learning rule. while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally. the effectiveness of the proposed controller is verified through computer simulation for an inverted pole system.

Fuzzy-Bayes Fault Isolator Design for BLDC Motor Fault Diagnosis

  • Suh, Suhk-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.354-361
    • /
    • 2004
  • To improve fault isolation performance of the Bayes isolator, this paper proposes the Fuzzy-Bayes isolator, which uses the Fuzzy-Bayes classifier as a fault isolator. The Fuzzy-Bayes classifier is composed of the Bayes classifier and weighting factor, which is determined by fuzzy inference logic. The Mahalanobis distance derivative is mapped to the weighting factor by fuzzy inference logic. The Fuzzy-Bayes fault isolator is designed for the BLDC motor fault diagnosis system. Fault isolation performance is evaluated by the experiments. The research results indicate that the Fuzzy-Bayes fault isolator improves fault isolation performance and that it can reduce the transition region chattering that is occurred when the fault is injected. In the experiment, chattering is reduced by about half that of the Bayes classifier's.

Design of Neuro-Fuzzy-based Predictive Controller for Nonlinear Systems with Time Delay (지연시간을 갖는 비선형 시스템을 위한 퍼지-신경망 기반 예측제어기 설계)

  • Kim, Sung-Ho;Kim, Joo-Whan;Lee, Young-Sam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.144-150
    • /
    • 2002
  • In this paper a design of neuro-fuzzy-based predictive controller for nonlinear systems with time-delay is proposed. The proposed control system contains two neuro-fuzzy systems called ANFIS(Adaptive Neuro-Fuzzy Inference System). One is run as a series-parallel mode and the other is run as a parallel mode. An ANFIS running in series-parallel mode emulates the response of the nonlinear system with time-delay. Another ANFIS running in parallel mode generates the predicted output of the nonlinear system to compensate for the time-delays. Therefore, the proposed control system can be thought of as an extension of Smith-predictor scheme to the nonlinear systems with time-delay. A detailed design Procedure is presented and finally computer simulations are executed for the effectiveness of the proposed control scheme.