• Title/Summary/Keyword: Fuzzy Inference system

Search Result 942, Processing Time 0.029 seconds

Evaluation System of Psychological Feelings for Corporate Identity Symbol Marks Using Fuzzy Neural Networks (퍼지 - 뉴럴네트워크를 이용한 CI 심벌마크의 감성평가시스템)

  • Chang, In-Seong;Park, Yong-Ju
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • In this paper, we construct an automatic evaluation system of psychological feeling for corporate identity (CI) symbol mark based on a fuzzy neural network technique. The system is modelled by trainable fuzzy inference rules with several input variables (qualitative and quantitative design components of CI symbol mark) and a single output variable (consumer's feeling). The back propagation learning algorithm, which is a conventional learning method of multilayer feedforward neural networks, is used for parameter identification of the fuzzy inference system. The learning ability to train data and the generalization ability to test data are evaluated for the proposed evaluation system by computer simulations.

  • PDF

Stabilization Control of Inverted Pendulum by Self tuning Fuzzy Inference Technique (자기동조 피지추론 기법에 의한 도립진자의 안정화 제어)

  • Shim, Young-Jin;Kim, Tae-Woo;Lee, Oh-Keol;Park, Young-Sik;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.83-85
    • /
    • 1997
  • In this paper, a self-tunning fuzzy inference technique for stabilization of the inverted pendulum system is proposed. The facility of this self-tunning fuzzy controller which has swing-up control mode and a stabilization one, moves a pendulum in an initial natural stable equilibrium point and a cart in arbitrary position, to an unstable equilibrium point and a center of rail. Specially, the virtual equilibrium point(${\phi}_{VEq}$) which describes functionally considers the interactive dynamics between a position of cart and a angle of inverted pendulum is introduced. And comparing with the convention optimal controller, the proposed self-tunning fuzzy inference structure made substantially the inverted pendulum system robust and stable.

  • PDF

Fuzzy Inference-based Reinforcement Learning of Dynamic Recurrent Neural Networks

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.60-66
    • /
    • 1997
  • This paper presents a fuzzy inference-based reinforcement learning algorithm of dynamci recurrent neural networks, which is very similar to the psychological learning method of higher animals. By useing the fuzzy inference technique the linguistic and concetional expressions have an effect on the controller's action indirectly, which is shown in human's behavior. The intervlas of fuzzy membership functions are found optimally by genetic algorithms. And using recurrent neural networks composed of dynamic neurons as action-generation networks, past state as well as current state is considered to make an action in dynamical environment. We show the validity of the proposed learning algorithm by applying it to the inverted pendulum control problem.

  • PDF

Fish Activity State based an Intelligent Automatic Fish Feeding Model Using Fuzzy Inference (퍼지추론을 이용한 어류 활동상태 기반의 지능형 자동급이 모델)

  • Choi, Han Suk;Choi, Jeong Hyeon;Kim, Yeong-ju;Shin, Younghak
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.167-176
    • /
    • 2020
  • The automated fish feed system currently used in Korea supplies a certain amounts of feed to water tanks at a certain time. This automated system can reduce the labor cost of managing aqua farms, but it is very difficult to control intelligently and appropriately the amount of expensive feed that is critical to aqua farm productivity. In this paper, we propose the FIIFF Inference Model( Fuzzy Inference-based Intelligent Fish Feeding Model) that can solves the problems of these existing automatic fish feeding devices and maximizes the efficiency of feed supply while properly maintaining the growth rate of fish in aqua farms. The proposed FIIFF inference model has the advantage of being able to control feed amounts appropriately since it computes the amount of feed using the current water environments and fish activity state of the aqua farms. The result of the feed amount yield experiment with the proposed FIIFF Inference Model represents the effect of saving 14.8% over the eight months of actual feed amount in the aqua farm.

Fuzzy Inference Based Design for Durability of Reinforced Concrete Structure in Chloride-Induced Corrosion Environment

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.157-166
    • /
    • 2005
  • This article involves architecting prototype-fuzzy expert system for designing the nominal cover thickness by means of fuzzy inference for quantitatively representing the environment affecting factor to reinforced concrete in chloride-induced corrosion environment. In this work, nominal cover thickness to reinforcement in concrete was determined by the sum of minimum cover thickness and tolerance to that defined from skill level, constructability and the significance of member. Several variables defining the quality of concrete and environment affecting factor (EAF) including relative humidity, temperature, cyclic wet and dry, and the distance from coast were treated as fuzzy variables. To qualify EAF the environment conditions of cycle degree of wet-dry, relative humidity, distance from coast and temperature were used as input variables. To determine the nominal cover thickness a qualified EAF, concrete grade, and water-cement ratio were used. The membership functions of each fuzzy variable were generated from the engineering knowledge and intuition based on some references as well as some international codes of practice.

Design of IMC for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • Kim, Sung-Ho;Kang, Jung-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.958-961
    • /
    • 2001
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC is their robustness with respect to a model mismatch and disturbances. But it is difficult to apply for nonlinear systems. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in ANFIS can be effectively utilized to control a nonlinear systems. In this paper, we propose new ANFIS-based IMC controller for nonlinear systems. Numerical simulation results show that the proposed control scheme has good performances.

  • PDF

Contingency Severity Ranking Using Direct Method in Power Systems (전력계통에 있어서 직접법을 활용한 상정사고 위험순위 결정)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.67-72
    • /
    • 2005
  • This paper presents a method to select contingency ranking considering voltage security problems in power systems. Direct method which needs not the detailed knowledge of the post contingency voltage at each bus is used. Based on system operator's experience and knowledge, the membership functions for the MVAR mismatch and allowable voltage violation are justified describing linguistic representation with heuristic rules. Rule base is used for the computation of severity index for each contingency by fuzzy inference. Contingency ranking harmful to the system is formed by the index for security evaluation. Compared with 1P-1Q iteration, this algorithm using direct method and fuzzy inference shows higher computation speed and almost the same accuracy. The proposed method is applied to model system and KEPCO pratical system which consists of 311 buses and 609 lines to show its effectiveness.

Design of Fuzzy Adaptive IIR Filter in Direct Form (직접형 퍼지 적응 IIR 필터의 설계)

  • 유근택;배현덕
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.370-378
    • /
    • 2002
  • Fuzzy inference which combines numerical data and linguistic data has been used to design adaptive filter algorithms. In adaptive IIR filter design, the fuzzy prefilter is taken account, and applied to both direct and lattice structure. As for the fuzzy inference of the fuzzy filter, the Sugeno's method is employed. As membership functions and inference rules are recursively generated through neural network, the accuracy can be improved. The proposed adaptive algorithm, adaptive IIR filter with fuzzy prefilter, has been applied to adaptive system identification for the purposed of performance test. The evaluations have been carried out with viewpoints of convergence property and tracking properties of the parameter estimation. As a result, the faster convergence and the better coefficients tracking performance than those of the conventional algorithm are shown in case of direct structures.

Knowledge Base Construction of Ship Design Using Fuzzy Equalization and Rough Sets (퍼지균등화와 러프집합을 이용한 선박설계 지식기반 구축)

  • Suh, Kyu-Youl
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.115-119
    • /
    • 2007
  • Inference rules of the knowledge base, generated by experts or optimization, may be often inconsistent and incomplete. This paper suggests a systematic and automatic method which extracts inference rules not from experts' subject but from data. First, input/output linguistic variables are partitioned into several properties by the fuzzy equalization algorithm and each combination of their properties comes to premise of inference rule. Then, the conclusion which is the mast suitable for the premise is selected by evaluating consistent measure. This method, automatically from data, derives inference rules from experience. It is shown through application that extracts new inference rules between hull dimensions and hull performance.

Development of Fuzzy Inference Systems for Protection to Electrical Accidents of Laboratory (연구실 전기사고방지를 위한 퍼지 추론 시스템 개발)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3636-3643
    • /
    • 2011
  • To prevent the electrical accidents in the laboratory, we identify problems for periodic inspections of the electric field and develop a fuzzy inference system that can be practically applied to check items. Focusing on electrical safety in the lab environment, we draw check items that can be applied in common and develop a standard checklist that is consistent with the laboratory electrical safety and the periodic inspections. Using the standard checklist we select the items that may contain a linguistic ambiguity and define the membership functions for these items. We also have a safety rating defined by the membership function. Using these fuzzy variables we form the fuzzy rules in the form of 'If-Then' and develop a fuzzy inference system through the fuzzy engine. From this, electrical accidents could be prevented in advance continuously by managing the intelligent and efficient inspection and electrical safety to prevent the electrical accidents in the laboratory.