• Title/Summary/Keyword: Fuzzy Inference Model

Search Result 421, Processing Time 0.022 seconds

Design and Evaluation of ANFIS-based Classification Model (ANFIS 기반 분류모형의 설계 및 성능평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.151-165
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of its outstanding accuracy of control and forecasting area. We design a new classification model based on ANFIS and evaluate it in terms of classification accuracy. We identified ANFIS-based classification model has higher classification accuracy compared to existing classification model, C5.0 decision tree model by comparing their experimental results.

  • PDF

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

On Chaotic Behavior of Fuzzy Inferdence Rule Based Nonlinear Functions

  • Ikoma, Norikazu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.861-864
    • /
    • 1993
  • This research provides the results of a trial to generate the chaos by using nonlinear function constructed by fuzzy inference rules. The chaos generation function or chaotic behavior can be obtained by using Takagi-Sugeno fuzzy model with some constraint of the relationship of its parameters. Two examples are shown in this research. The first is simple example that construct of logistic image by fuzzy model. The second is more complicated one that provide the chaotic time series by non-linear autoregression based on fuzzy model. Simulated results are shown in these examples.

  • PDF

Fuzzy Learning Method Using Genetic Algorithms

  • Choi, Sangho;Cho, Kyung-Dal;Park, Sa-Joon;Lee, Malrey;Kim, Kitae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.841-850
    • /
    • 2004
  • This paper proposes a GA and GDM-based method for removing unnecessary rules and generating relevant rules from the fuzzy rules corresponding to several fuzzy partitions. The aim of proposed method is to find a minimum set of fuzzy rules that can correctly classify all the training patterns. When the fine fuzzy partition is used with conventional methods, the number of fuzzy rules has been enormous and the performance of fuzzy inference system became low. This paper presents the application of GA as a means of finding optimal solutions over fuzzy partitions. In each rule, the antecedent part is made up the membership functions of a fuzzy set, and the consequent part is made up of a real number. The membership functions and the number of fuzzy inference rules are tuned by means of the GA, while the real numbers in the consequent parts of the rules are tuned by means of the gradient descent method. It is shown that the proposed method has improved than the performance of conventional method in formulating and solving a combinatorial optimization problem that has two objectives: to maximize the number of correctly classified patterns and to minimize the number of fuzzy rules.

  • PDF

A fuzzy model of human performance for VDU workers (VDU작업자의 작업수행도에 대한 퍼지모형)

  • ;;;神代雅晴
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.97-104
    • /
    • 1995
  • The widespread use of VDU has improved the efficiency of information transmission between man and machine, but has caused new occupational health and ergonomics problems. In this study, we tried to construct a fuzzy hyman performance model of VDU workers in Korea. Fuzzy inferences of human perfor- mance are obtained from the fuzzy inference rule with the job difficulty, CFF, SACL, Type A. and the degree of concentration in VDU work. Eight healthy female undergraduate students at Kyungnam university for subjects aged 20 to 23 years were examined in this experiment. They calculated continuous addition, subtraction, and multiplication of 1 or 2 digit numbers that were produced randomly on the CRT. Subjects peoformed two types of a numeric operation, which easy and difficult work produced 400 and 600 problems within a 40 minute work session, respectively. Subjects were tested over two workdays according to the type of work(easy and difficult) consisting of four 40 minutes work sessions in the morning. Each work lasted for five minutes with a ten minutes rest break. 117 fuzzy inference rules were obtained from the experimental data. The value of consequent part was obtained by a descent method. The difference between real human error and estimated value of fuzzy inference was $1.8075{\pm}1.8591%(M{\pm}SD)$. The difference in easy and diffcult works were $2.69{\pm}2.13%$ and $0.92{\pm}0.93%$, respectively.

  • PDF

A Study on the Inference of Product Design Elements by Fuzzy Decision Making Model (퍼지 의사결정 모델에 의한 감성제품 디자인 요소의 추론에 관한 연구)

  • Yang, Seon-Mo;Lee, Sun-Yo;An, Beom-Jun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 1998
  • A human sensibility ergonomics design supporting system was applied to the product development for the customer's satisfaction based on ergonomics technology. The system is composed of three major subsystems such as customer's sensibility analysis, inference mechanism, and presentation technology. The main approaches of the system are to analyze customer's sensibilities and to translate them into product design elements. The purpose of this paper is to develop a design supporting system in which the relationship between customer's sensibility and product design elements is reasoned by a MADM(Multi-Attribute Decision Making) fuzzy model. In this model, three variables such as multiple correlation coefficients, partial correlation coefficients, and category scores were used in reasoning process. The weighted value of the words were also considered in fuzzy decision process. As a case study, the design supporting system with the MADM fuzzy model was applied to the personnel computer design.

  • PDF

Design of Self-Organizing Networks with Competitive Fuzzy Polynomial Neuron (경쟁적 퍼지 다항식 뉴론을 가진 자기 구성 네트워크의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.800-802
    • /
    • 2000
  • In this paper, we propose the Self-Organizing Networks(SON) based on competitive Fuzzy Polynomial Neuron(FPN) for the optimal design of nonlinear process system. The SON architectures consist of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as FPN which includes either the simplified or regression Polynomial fuzzy inference rules. The proposed SON is a network resulting from the fusion of the Polynomial Neural Networks(PNN) and a fuzzy inference system. The conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as liner, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. Chaotic time series data used to evaluate the performance of our proposed model.

  • PDF

Tuning Fuzzy Rules Based on Additive-Type Fuzzy System Models

  • Shi, Yan;Mizumoto, Masaharu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.387-390
    • /
    • 1998
  • In this paper, we suggested a neuro-fuzzy learning algorithm for tuning fuzzy rules, in which a fuzzy system model is of additive-type. Using the method, it is possible to reduce the computation size, since performing the fuzzy inference and tuning the fuzzy rules of each fuzzy subsystem model are independent. Moreover, the efficiency of suggested method is shown by means of a numerical example.

  • PDF

A Fuzzy Continuous Petri Net Model for Helper T cell Differentiation

  • Park, In-Ho;Na, Do-Kyun;Lee, Kwang-H.;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.344-347
    • /
    • 2005
  • Helper T(Th) cells regulate immune response by producing various kinds of cytokines in response to antigen stimulation. The regulatory functions of Th cells are promoted by their differentiation into two distinct subsets, Th1 and Th2 cells. Th1 cells are involved in inducing cellular immune response by activating cytotoxic T cells. Th2 cells trigger B cells to produce antibodies, protective proteins used by the immune system to identify and neutralize foreign substances. Because cellular and humoral immune responses have quite different roles in protecting the host from foreign substances, Th cell differentiation is a crucial event in the immune response. The destiny of a naive Th cell is mainly controlled by cytokines such as IL-4, IL-12, and IFN-${\gamma}$. To understand the mechanism of Th cell differentiation, many mathematical models have been proposed. One of the most difficult problems in mathematical modeling is to find appropriate kinetic parameters needed to complete a model. However, it is relatively easy to get qualitative or linguistic knowledge of a model dynamics. To incorporate such knowledge into a model, we propose a novel approach, fuzzy continuous Petri nets extending traditional continuous Petri net by adding new types of places and transitions called fuzzy places and fuzzy transitions. This extension makes it possible to perform fuzzy inference with fuzzy places and fuzzy transitions acting as kinetic parameters and fuzzy inference systems between input and output places, respectively.

  • PDF

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF