• 제목/요약/키워드: Fuzzy Gain Tuning

검색결과 75건 처리시간 0.023초

퍼지 게인 스케쥴링을 이용한 CSTR의 온도 제어 (Temperature Control of a CSTR using Fuzzy Gain Scheduling)

  • 김종화;고강영;진강규
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.839-845
    • /
    • 2013
  • A CSTR (Continuous Stirred Tank Reactor) is a highly nonlinear process with varying parameters during operation. Therefore, tuning of the controller and determining the transition policy of controller parameters are required to guarantee the best performance of the CSTR for overall operating regions. In this paper, a methodology employing the 2DOF (Two-Degree-of-Freedom) PID controller, the anti-windup technique and a fuzzy gain scheduler is presented for the temperature control of the CSTR. First, both a local model and an EA (Evolutionary Algorithm) are used to tune the optimal controller parameters at each operating region by minimizing the IAE (Integral of Absolute Error). Then, a set of controller parameters are expressed as functions of the gain scheduling variable. Those functions are implemented using a set of "if-then" fuzzy rules, which is of Sugeno's form. Simulation works for reference tracking, disturbance rejecting and noise rejecting performances show the feasibility of using the proposed method.

전자부품용 저항용접기의 퍼지-PID 이득조정 알고리즘 (Fuzzy-PID Gain Scheduling Algorithm of Resistive Welder for Electronic Parts)

  • Park, Myung-Kwan;Lee, Jong-Woon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.114-116
    • /
    • 2004
  • The temperature profile control issue in the resistive welder for the electronic parts is discussed. The average current of the welder tip depends on the phase(on-time) of the AC power and the tip temperature maintains or increases/decreases depending on the integral of the current square and heat loss, The basic PID control algorithm with thermo-couple feedback is difficult to track the temperature profile for various parts and optimal gain changes much. So constant gain PID algorithm is not enough to cover various electronic parts welding and a Fuzzy-PID automatic gain tuning algorithm is devised and added to conventional PID algorithm and this hybrid control architecture is implemented and the experimental results are shown.

  • PDF

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • 제4권4호
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

Design of Fuzzy Logic Tuned PID Controller for Electric Vehicle based on IPMSM Using Flux-weakening

  • Rohan, Ali;Asghar, Furqan;Kim, Sung Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.451-459
    • /
    • 2018
  • This work presents an approach for modeling of electric vehicle considering the vehicle dynamics, drive train, rotational wheel and load dynamics. The system is composed of IPMSM (Interior Permanent Magnet Synchronous Motor) coupled with the wheels through a drive train. Generally, IPMSM is controlled by ordinary PID controllers. Performance of the ordinary PID controller is not satisfactory owing to the difficulties of optimal gain selections. To overcome this problem, a new type of fuzzy logic gain tuner for PID controllers of IPMSM is required. Therefore, in this paper fuzzy logic based gain tuning method for PID controller is proposed and compared with some previous control techniques for the better performance of electric vehicle with an optimal balance of acceleration, speed, travelling range, improved controller quality and response. The model was developed in MATLAB/Simulink, simulations were carried out and results were observed. The simulation results have proved that the proposed control system works well to remove the transient oscillations and assure better system response in all conditions.

다양한 성능 만족을 위한 계층적 제어기 설계 (Design of Hierarchical Controller for Satisfaction of Multiple Performance)

  • 조준호
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.396-406
    • /
    • 2007
  • In this paper, we proposed development of improved model reduction and design of hierarchical controller using reduction model. The model reduction is considered that it is the transient response and the steady-state response through the use of nyquist curve. The hierarchical controller selected tuning of PID controller to ensure specified gain and phase margin and hybrid smith-predictor fuzzy controller using reduction model. Simulation examples are given to show the better performance of the proposed method than conventional methods.

자기동조 퍼지 제어기를 이용한 스위치드 릴럭턴스 모터의 전류제어 (Current Control of Switched Reluctance Motor Using Self-tuning Fuzzy Controller)

  • 이영수;김재혁;오훈
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.473-479
    • /
    • 2016
  • 본 논문은 가격이 저렴하고 친환경적이면서도 고성능, 고내구성, 구조적 단순함의 장점을 갖고 있어 최근에 폭넓은 관심을 받고 있는 스위치드 릴럭턴스 모터(SRM: Switched Reluctance Motor)의 보다 정확하고 안정적인 전류제어 방법에 대해 설명한다. 대부분의 전동기의 전류제어 방법에는 알고리즘과 제어 이득의 선정이 다른 제어기에 비해 상대적으로 간편한 PI 제어기를 이용한 방법이 주로 사용되어 왔다. 그러나 일반적인 PI 제어기는 SRM과 같이 고정자 권선의 전류 및 회전자의 위치마다 비선형적으로 파라미터가 급변하는 시스템의 경우 변하는 동작 지점마다 제어 이득을 조정해 주어야 하는 어려움이 발생한다. 본 논문에서는 비선형적으로 특성이 변하는 SRM 드라이브 시스템에 제어 성능이 우수한 자기동조 퍼지 제어기를 이용한 제어기법을 적용하여 비선형적인 파라미터의 변화에도 보다 안정적인 전류제어가 가능한 것을 보였다. 또한 Matlab/Simulink 시뮬레이션을 이용하여, SRM 드라이브의 전류제어에 PI 전류 제어기(PICC: PI Current Controller)와 자기동조 퍼지 전류 제어기(STFCC: Self-tuning Fuzzy Current Controller)를 각각 적용한 후 그 결과를 비교하였으며 제안한 자기동조 퍼지 제어기의 제어성능이 우수함을 확인하였다.

퍼지제어기를 이용한 토크 표준기의 정밀제어 (Precision Control of a Torque Standard Machine Using Fuzzy Controller)

  • 김갑순;강대임
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.46-52
    • /
    • 2001
  • This study describes the precision control of the torque standard machine using a self-tuning fuzzy controller. The torque standard machine should generate the accurate torque for calibrating a torque sensor. In order to reduce the relative expanded uncertainty of the torque standard machine, when a weight is hanged to the end of the torque arm for generating the torque, the sloped torque arm should be accurately controlled to the horizontal level. If the slope of the torque arm is larger from the inaccurate control, the uncertainty of the torque standard machine due to control will be larger. This applies the inaccurate torque to a torque sensor to calibrate, and the measuring error of the torque sensor generate from it. Therefore the torque arm of the torque standard machine is accurately controlled. In this paper, the self-tuning fuzzy controller was designed using a fuzzy theory, and the torque arm of the torque standard machine was accurately controlled. The control gain of the fuzzy controller, that is the membership function size of the error, the membership function size of the error change and the membership function size of the controller were determined from the self-tuning. The control results of the torque standard machine were the overshoot within 0.0076mm, the rise time within 16.70sec and the steady state error within 0.0076mm.

  • PDF

출력 신호만에 의한 PID제어기 이득 조절용 Fuzzy판단자의 설계 (Design of a Fuzzy decision maker for gain-tuning of the PID controller with signal of only)

  • 정경채;김민수;이혜영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.496-498
    • /
    • 1998
  • This paper presents a mathod of reducing hunting size or steady state error occurred in the output signals via regulating the PID controllers gains. The PID controllers are widely used in industrial processes. Such processes have several inherent features like continuous operation, fixed set value, and difficulty in applyirty test signals. Thus, this paper suggests fuzzy rules of reducing hunting magnitude or steady state error using output signals only. Such an intelligent tuning technique utilizes both the experts, experience and control engineers' theortical background. For two kinds of systems such as temperature or DC motors speed control, we showed the validity of proposed method in this paper.

  • PDF