• 제목/요약/키워드: Fuzzy Functions

검색결과 946건 처리시간 0.023초

Design Fuzzy Controller for the Ball Positioning System Based on the Knowledge Acquisition and Adaptation

  • Hyeon Bae;Jung, Jae-Ryong;Kim, Sungshin
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.603-610
    • /
    • 2001
  • Industrial processes are normally operated by skilled humans who have the cumulative and logical information about the system. Fuzzy control has been investigated for many application. Intelligent control approaches based on fuzzy logic have a chance to include human thinking. This paper represents modeling approach based upon operators knowledge without mathematical model of the system and optimize the controller. The experimented system is constructed for sending a ball to the goal position using wind of two DC motors in the predefined path. A vision camera to mimic human eyes detects the ball position. The system used in this experiment could be hardly modeled by mathematical methods and ould not be easily controlled by conventional manners. The controller is designed based on the input-output data and experimental knowledge obtained by trials, and optimized under the predefined performance criterion. And this paper shows the data adaptation for changeable operating condition. When the system is driven in the abnormal condition with unconsidered noise, the new optimal operating parameters could be defined by adjusting membership functions. Thus, this technique could be applied in industrial fields.

  • PDF

저전압 SR모터의 퍼지로직 기반 전상각 제어 (Fuzzy logic based advance angle control for low voltage SRM)

  • 김규동;신두진;허성재;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.22-25
    • /
    • 2001
  • In this paper, a fuzzy advance angle control method is described to drive an industrial low voltage SRM (Switched Reluctance Motor) for 10kW forklift truck. SRM has a highly non-linear characteristic that is due to change the rotor and stator. And low voltage SRM is designed that its phase resistance and phase inductance is very low to inject high current into the phase windings. In this reason, the proper current control is necessary to drive the low voltage SRM efficiently. SRM has positive torque at increasing inductance region and negative torque at decreasing inductance region. Due to this reason, the current has to be built up in the increasing phase inductance part as soon as possible. Therefore, the phase switch must be turned on before the phase inductance increases, and this angle is called as the advance angle. Also, the phase current has to be dropped before the phase inductance decreases. Fuzzy logic is a flexible and general-purposed method of implementing non-linear functions and as such it is useful in control applications. Consequently, we designed a fuzzy advance angle controller to control the phase current appropriately.

  • PDF

유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계 (The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index)

  • 오성권;윤기찬;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

배전계통에서 부하불평형을 고려한 분산형 전원의 운영 계획 (Planning for Operation of Dispersed Generation Systems considering Load Unbalance in Distribution Systems)

  • 이유정;유석구
    • 조명전기설비학회논문지
    • /
    • 제17권5호
    • /
    • pp.118-125
    • /
    • 2003
  • 본 연구에서는 배전계통에서 부하불평형을 고려한 분산형 전원의 운영에 대한 계획을 제안하였다. 또한, 배전계통의 실제 부하구성 분포를 고려하기 위하여 부하모형은 가정용, 산업용, 상업용, 사무용 및 농업용 부하 등의 집단 부하로 모형화 하였다. 또한, 목적함수로는 계통 유효전력손실을 사용하였고 분산형전원의 수 또는 총용량 및 모선 전압을 제약조건으로 정식화하였으며, 이 목적함수와 제약조건에 대한 부정확한 성질을 평가하기 위하여 퍼지 Goal Programing으로 모델링 하였으며, GA를 사용하여 최적해를 탐색하였다.

Design and Implementation of a Single Input Fuzzy Logic Controller for Boost Converters

  • Salam, Zainal;Taeed, Fazel;Ayob, Shahrin Md.
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.542-550
    • /
    • 2011
  • This paper describes the design and hardware implementation of a Single Input Fuzzy Logic Controller (SIFLC) to regulate the output voltage of a boost power converter. The proposed controller is derived from the signed distance method, which reduces a multi-input conventional Fuzzy Logic Controller (CFLC) to a single input FLC. This allows the rule table to be approximated to a one-dimensional piecewise linear control surface. A MATLAB simulation demonstrated that the performance of a boost converter is identical when subjected to the SIFLC or a CFLC. However, the SIFLC requires nearly an order of magnitude less time to execute its algorithm. Therefore the former can replace the latter with no significant degradation in performance. To validate the feasibility of the SIFLC, a 50W boost converter prototype is built. The SIFLC algorithm is implemented using an Altera FPGA. It was found that the SIFLC with asymmetrical membership functions exhibits an excellent response to load and input reference changes.

웨이브렛 계수를 이용한 부정맥 판정용 퍼지시스템 설계 (Design of Fuzzy System for Decision of Arrhythmia using Wavelet Coefficients)

  • 김민수;서희돈
    • 센서학회지
    • /
    • 제11권4호
    • /
    • pp.230-238
    • /
    • 2002
  • 본 연구에서는 PVC의 효과적인 검출과 부정맥 판정의 정확성을 높이기 위해 웨이브렛 계수를 이용한 퍼지 시스템을 설계하였다. 제안한 시스템에서 심전도의 QRS군을 Haar 웨이브렛을 이용한 웨이브렛 변환을 통해서 신호의 주파수를 6레벨 대역으로 분할하였다. 본 논문에서 설계한 퍼지 시스템의 성능평가를 위해서 MIT/BIH 데이터 베이스를 입력 신호원으로 사용했다. 그리고 퍼지 규칙을 이용해서 맥박수와 조기심실수축을 멤버쉽 함수로 결정하고, 신경망을 학습시켜서 적용함으로써 비정상치를 효과적으로 검출할 수 있었으며, 또한 부정맥의 판정에 있어서도 95%의 분류성능을 보였다.

유전과 기울기 최적화기법을 이용한 퍼지 파라메터의 자동 생성 (Automatic generation of Fuzzy Parameters Using Genetic and gradient Optimization Techniques)

  • 유동완;라경택;전순용;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.515-518
    • /
    • 1998
  • This paper proposes a new hybrid algorithm for auto-tuning fuzzy controllers improving the performance. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a genetic-MGM algorithm. The object of the proposed algorithm is to promote search efficiency by a genetic and modified gradient optimization techniques. The proposed genetic and MGM algorithm is based on both the standard genetic algorithm and a gradient method. If a maximum point don't be changed around an optimal value at the end of performance during given generation, the genetic-MGM algorithm searches for an optimal value using the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algorithms. Simulation results verify the validity of the presented method.

  • PDF

PCI 기반 병렬 퍼지추론 시스템과 설계 및 구현 (Design and Implementation of a PCI-based Parallel Fuzzy Inference System)

  • 이병권;이상구
    • 한국지능시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.764-770
    • /
    • 2001
  • 본 논문에서는 대용량의 퍼지 데이터를 고속으로 전송 및 추론하기 위해 새로운 PCI 버스 기반 병렬 퍼지 시스템을 제안한다. 많은 퍼지 데이터의 고속전송을 위해 PCI 9050 인터페이스를 사용하고, 병렬 퍼지 추론 시스템을 위한 병렬 퍼지 모듈들을 FPGA로 설계하여 PCI 타겟 코어로서 병렬로 동작하게 한다. 여기서 소속함수들의 각 요소와 전건부 또는 후건부부분의 병렬화을 고려하여 제안된 시스템을 VHDL을 사용하여 설계 및 구현하였다. 제안된 시스템은 실시간에 고속의 퍼지추론을 요하는 시스템 또는 대용량 인공위성 영상 데이터의 패턴 인식 등과 같이 다수의 전건부, 후건부의 변수를 갖는 시스템에 활용될 수 있다.

  • PDF

퍼지논리 및 GPS정보를 이용한 링크통행속도의 예측 (Fuzzy Logic Based Prediction of Link Travel Velocity Using GPS Information)

  • 정우진;이종수;고진웅;박평수
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.342-347
    • /
    • 2003
  • 지능형교통정보시스템에 있어서 적절한 교통량 분산을 통한 교통망의 제어 및 정확한 주행정보의 제공을 위해 현재의 교통상황 또는 링크통행정보를 정확히 판단하고 평가할 수 있는 알고리즘의 개발이 필요하다. 본 논문에서는 퍼지추론시스템을 적용하여 보다 합리적으로 링크통행속도를 판단할 수 있는 알고리즘을 제안한다. 교통상황을 특징짓는 세 가지 요인으로 시간, 요일, 속도를 선정하였고 이를 퍼지변수로 표현하여 링크통행속도의 예측을 위한 적절한 퍼지규칙을 선정하였다. 본 논문에서는 실제 주행실험을 통해 얻은 차량의 GPS정보만을 사용하였다. 취득한 GPS정보 중에서 신뢰도가 높은 데이터만을 선택하여 도로통행속도를 계산하였고 퍼지추론의 과정을 통해 링크주행속도를 예측하였다.

Data Mining and FNN-Driven Knowledge Acquisition and Inference Mechanism for Developing A Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.99-104
    • /
    • 2003
  • In this research, we proposed the mechanism to develop self evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most former researchers tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, thy have some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, many of researchers had tried to develop an automatic knowledge extraction and refining mechanisms. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, in this study, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference. Our proposed mechanism has five advantages empirically. First, it could extract and reduce the specific domain knowledge from incomplete database by using data mining algorithm. Second, our proposed mechanism could manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it could construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems). Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic. Fifth, RDB-driven forward and backward inference is faster than the traditional text-oriented inference.

  • PDF