• Title/Summary/Keyword: Fuzzy Cluster Analysis

Search Result 66, Processing Time 0.025 seconds

Analysis of Combined Yeast Cell Cycle Data by Using the Integrated Analysis Program for DNA chip (DNA chip 통합분석 프로그램을 이용한 효모의 세포주기 유전자 발현 통합 데이터의 분석)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.538-546
    • /
    • 2001
  • An integrated data analysis program for DNA chip containing normalization, FDM analysis, various kinds of clustering methods, PCA, and SVD was applied to analyze combined yeast cell cycle data. This paper includes both comparisons of some clustering algorithms such as K-means, SOM and furry c-means and their results. For further analysis, clustering results from the integrated analysis program was used for function assignments to each cluster and for motif analysis. These results show an integrated analysis view on DNA chip data.

  • PDF

Improvement of the PFCM(Possibilistic Fuzzy C-Means) Clustering Method (PFCM 클러스터링 기법의 개선)

  • Heo, Gyeong-Yong;Choe, Se-Woon;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.177-185
    • /
    • 2009
  • Cluster analysis or clustering is a kind of unsupervised learning method in which a set of data points is divided into a given number of homogeneous groups. Fuzzy clustering method, one of the most popular clustering method, allows a point to belong to all the clusters with different degrees, so produces more intuitive and natural clusters than hard clustering method does. Even more some of fuzzy clustering variants have noise-immunity. In this paper, we improved the Possibilistic Fuzzy C-Means (PFCM), which generates a membership matrix as well as a typicality matrix, using Gath-Geva (GG) method. The proposed method has a focus on the boundaries of clusters, which is different from most of the other methods having a focus on the centers of clusters. The generated membership values are suitable for the classification-type applications. As the typicality values generated from the algorithm have a similar distribution with the values of density function of Gaussian distribution, it is useful for Gaussian-type density estimation. Even more GG method can handle the clusters having different numbers of data points, which the other well-known method by Gustafson and Kessel can not. All of these points are obvious in the experimental results.

Study on Origin and Phylogeny Status of Hu Sheep

  • Geng, R.Q.;Chang, H.;Yang, Z.P.;Sun, W.;Wang, L.P.;Lu, S.X.;Tsunoda, K.;Ren, Z.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.743-747
    • /
    • 2003
  • Applying simple random sampling in typical colony methods in the central area of habitat, 14 structural loci and 31 alleles in blood enzyme and other protein variations of Hu sheep population are examined. After collecting the same data of 11 loci about the 22 sheep colonies in China and other countries, it clusters the 23 sheep populations by fuzzy cluster analysis. The study proves that the phylogenetic relationship between Hu sheep population and Mongolia populations is relatively closed. This result obtained is shown to conform to the historical data.

Prediction and Classification System for Temporal lobe Epilepsy (측두엽 간질 예측과 분류시스템)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.199-206
    • /
    • 2004
  • Epileptic seizures result from a temporary electrical disturbance of the brain. In this paper, a method of discriminating EEG for diagnoses of temporal lobe epilepsy is proposed. The proposed method for classification of epilepsy and sleep EEG is based on the wavelet transform and the fuzzy c-means. The magnitude and mean of wavelet coefficients for each EEG band are applied to the cluster of the FCM classifier. The proposed system show a little more accurate diagnosis for EEG by analysis of frequency for Wavelet and the success rate of 95% classification using FCM. From the simulation results by the implemented system, we demonstrated this research can be reduce doctor's labors and realize quantitative diagnosis of EEG.

A Clustering Tool Using Particle Swarm Optimization for DNA Chip Data

  • Han, Xiaoyue;Lee, Min-Soo
    • Genomics & Informatics
    • /
    • v.9 no.2
    • /
    • pp.89-91
    • /
    • 2011
  • DNA chips are becoming increasingly popular as a convenient way to perform vast amounts of experiments related to genes on a single chip. And the importance of analyzing the data that is provided by such DNA chips is becoming significant. A very important analysis on DNA chip data would be clustering genes to identify gene groups which have similar properties such as cancer. Clustering data for DNA chips usually deal with a large search space and has a very fuzzy characteristic. The Particle Swarm Optimization algorithm which was recently proposed is a very good candidate to solve such problems. In this paper, we propose a clustering mechanism that is based on the Particle Swarm Optimization algorithm. Our experiments show that the PSO-based clustering algorithm developed is efficient in terms of execution time for clustering DNA chip data, and thus be used to extract valuable information such as cancer related genes from DNA chip data with high cluster accuracy and in a timely manner.

A Study For the Development of Enhanced Classification Method of Consumer Attributes (사용자 요구품질 추출과 분류방법의 개선에 관한 연구)

  • 김승남;김철홍;정영배;김연수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.67
    • /
    • pp.77-82
    • /
    • 2001
  • A study was conducted to develop a better classification method of Consumer Attributes that can enhance user-centered product design process. A modified QFD(Quality Function Deployment) survey form based upon Fuzzy set theory was proposed which contains 9 steps of importance level, and Certainty and Necessity function to improve the reliability of extracted consumer attributes. To verify the betterment and advantage of proposed classification method, a series of questionnaire survey was performed. Thirty male and 30 female university students were participated in the survey using a VCR as a target product. The result of the study showed that 80% of subjects were preferred the proposed classification over existing method. A cluster analysis was performed to further verify the betterment of the proposed method. The result also supported that the proposed classification method is more reliable and enhanced method in extracting consumer attributes and can be applied in the product design.

  • PDF

Segmentation of MR Brain Image Using Scale Space Filtering and Fuzzy Clustering (스케일 스페이스 필터링과 퍼지 클러스터링을 이용한 뇌 자기공명영상의 분할)

  • 윤옥경;김동휘;박길흠
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.339-346
    • /
    • 2000
  • Medical image is analyzed to get an anatomical information for diagnostics. Segmentation must be preceded to recognize and determine the lesion more accurately. In this paper, we propose automatic segmentation algorithm for MR brain images using T1-weighted, T2-weighted and PD images complementarily. The proposed segmentation algorithm is first, extracts cerebrum images from 3 input images using cerebrum mask which is made from PD image. And next, find 3D clusters corresponded to cerebrum tissues using scale filtering and 3D clustering in 3D space which is consisted of T1, T2, and PD axis. Cerebrum images are segmented using FCM algorithm with its initial centroid as the 3D cluster's centroid. The proposed algorithm improved segmentation results using accurate cluster centroid as initial value of FCM algorithm and also can get better segmentation results using multi spectral analysis than single spectral analysis.

  • PDF

The Characteristic of the Disasters caused by Typhoons passing through the Sea Area around the Korean Peninsula (한반도 주변 해역을 통과한 태풍의 재해특성)

  • Ahn, Suk-Hee;Choi, Ki-Seon;Kim, Baek-Jo;Shin, Seung-Sook
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.109-112
    • /
    • 2008
  • The purpose of this study is to find out the characteristics of disasters caused by typhoons passing through the sea area around the Korean Peninsula. It analyzed two cases, that is, in WEST and EAST cases. These include the typhoons passing through the Yellow Sea, west of the Peninsula and East Sea, east of the Peninsula without landing on the Peninsula. FCM (Fuzzy Clustering Method) analysis was performed on typhoons affecting the Korean Peninsula from 1951 to 2006. The analysis shows that WEST case's cluster has the curved track of NE-S, and EAST case's cluster has the straight track of NE-SW. Typhoons that pass through the Yellow Sea have little change in frequency and the weak intensity. On the other hand, the frequency and the intensity of typhoons passing through the East Sea show the increasing trend. The characteristic of disasters by typhoons affecting the Korean Peninsula from 1973 to 2006 appears differently for each case: EAST cases caused significant damage in flooding, while WEST cases did damage in houses, ships, roads, and bridges. Rainfall amount and maximum wind speed data are analyzed in order to understand the impact of the typhoons, and the result indicates that the WEST cases are influenced by the wind, and East cases by precipitation. The result of this study indicates that the characteristic of disasters is distinctive according to the Typhoon's track. If applied to establish the disaster prevention plan, this result could make a contribution to the damage reduction.

  • PDF

3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm (펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1501-1514
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial information. The face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by multiple frequency domains for each depth image using the modified fuzzy c-mean algorithm. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. And the second step takes into consideration of the orientated frontal posture to normalize. Multiple contour line areas which have a different shape for each person are extracted by the depth threshold values from the reference point, nose tip. And then, the frequency component extracted from the wavelet subband can be adopted as feature information for the authentication problems. The third step of approach concerns the application of eigenface to reduce the dimension. And the linear discriminant analysis (LDA) method to improve the classification ability between the similar features is adapted. In the last step, the individual classifiers using the modified fuzzy c-mean method based on the K-NN to initialize the membership degree is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) showed the highest recognition rate among the extracted regions, and the proposed classification method achieved 98.3% recognition rate, incase of fuzzy cluster.

  • PDF

Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow (시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리)

  • Kang, Ji-Soo;Chung, Kyungyong;Jung, Hoill
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2021
  • In this paper, we propose health risk management using feature extraction and cluster analysis considering time flow. The proposed method proceeds in three steps. The first is the pre-processing and feature extraction step. It collects user's lifelog using a wearable device, removes incomplete data, errors, noise, and contradictory data, and processes missing values. Then, for feature extraction, important variables are selected through principal component analysis, and data similar to the relationship between the data are classified through correlation coefficient and covariance. In order to analyze the features extracted from the lifelog, dynamic clustering is performed through the K-means algorithm in consideration of the passage of time. The new data is clustered through the similarity distance measurement method based on the increment of the sum of squared errors. Next is to extract information about the cluster by considering the passage of time. Therefore, using the health decision-making system through feature clusters, risks able to managed through factors such as physical characteristics, lifestyle habits, disease status, health care event occurrence risk, and predictability. The performance evaluation compares the proposed method using Precision, Recall, and F-measure with the fuzzy and kernel-based clustering. As a result of the evaluation, the proposed method is excellently evaluated. Therefore, through the proposed method, it is possible to accurately predict and appropriately manage the user's potential health risk by using the similarity with the patient.