• Title/Summary/Keyword: Fuzzy Cluster

Search Result 261, Processing Time 0.034 seconds

Chlorophyll-a Forcasting using PLS Based c-Fuzzy Model Tree (PLS기반 c-퍼지 모델트리를 이용한 클로로필-a 농도 예측)

  • Lee, Dae-Jong;Park, Sang-Young;Jung, Nahm-Chung;Lee, Hye-Keun;Park, Jin-Il;Chun, Meung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.777-784
    • /
    • 2006
  • This paper proposes a c-fuzzy model tree using partial least square method to predict the Chlorophyll-a concentration in each zone. First, cluster centers are calculated by fuzzy clustering method using all input and output attributes. And then, each internal node is produced according to fuzzy membership values between centers and input attributes. Linear models are constructed by partial least square method considering input-output pairs remained in each internal node. The expansion of internal node is determined by comparing errors calculated in parent node with ones in child node, respectively. On the other hands, prediction is performed with a linear model haying the highest fuzzy membership value between input attributes and cluster centers in leaf nodes. To show the effectiveness of the proposed method, we have applied our method to water quality data set measured at several stations. Under various experiments, our proposed method shows better performance than conventional least square based model tree method.

A genetic algorithm for generating optimal fuzzy rules (퍼지 규칙 최적화를 위한 유전자 알고리즘)

  • 임창균;정영민;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.767-778
    • /
    • 2003
  • This paper presents a method for generating optimal fuzzy rules using a genetic algorithm. Fuzzy rules are generated from the training data in the first stage. In this stage, fuzzy c-Means clustering method and cluster validity are used to determine the structure and initial parameters of the fuzzy inference system. A cluster validity is used to determine the number of clusters, which can be the number of fuzzy rules. Once the structure is figured out in the first stage, parameters relating the fuzzy rules are optimized in the second stage. Weights and variance parameters are tuned using genetic algorithms. Variance parameters are also managed with left and right for asymmetrical Gaussian membership function. The method ensures convergence toward a global minimum by using genetic algorithms in weight and variance spaces.

An Improved Hybrid Canopy-Fuzzy C-Means Clustering Algorithm Based on MapReduce Model

  • Dai, Wei;Yu, Changjun;Jiang, Zilong
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The fuzzy c-means (FCM) is a frequently utilized algorithm at present. Yet, the clustering quality and convergence rate of FCM are determined by the initial cluster centers, and so an improved FCM algorithm based on canopy cluster concept to quickly analyze the dataset has been proposed. Taking advantage of the canopy algorithm for its rapid acquisition of cluster centers, this algorithm regards the cluster results of canopy as the input. In this way, the convergence rate of the FCM algorithm is accelerated. Meanwhile, the MapReduce scheme of the proposed FCM algorithm is designed in a cloud environment. Experimental results demonstrate the hybrid canopy-FCM clustering algorithm processed by MapReduce be endowed with better clustering quality and higher operation speed.

Document Clustering Method using PCA and Fuzzy Association (주성분 분석과 퍼지 연관을 이용한 문서군집 방법)

  • Park, Sun;An, Dong-Un
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.177-182
    • /
    • 2010
  • This paper proposes a new document clustering method using PCA and fuzzy association. The proposed method can represent an inherent structure of document clusters better since it select the cluster label and terms of representing cluster by semantic features based on PCA. Also it can improve the quality of document clustering because the clustered documents by using fuzzy association values distinguish well dissimilar documents in clusters. The experimental results demonstrate that the proposed method achieves better performance than other document clustering methods.

On-line drift compensation of a tin oxide gas sensor for identification of gas mixtures (혼합가스 식별을 위한 반도체식 가스센서의 온라인 드리프트 보상)

  • Shin, Jung-Yeop;Cho, Jeong-Hwan;Jeon, Gi-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.130-132
    • /
    • 2005
  • This paper presents two ART-based neural networks for the identification of gas mixtures subject to the drift. A fuzzy ARTMAP neural network is used for classifying $H_2S$, $NH_3$ and their mixture gases including a reference gas. The other fuzzy ART neural network is utilized to detect the drift of a tin oxide gas sensor by tracking a cluster center of the reference gas. After detecting the drift, the previous cluster center of each gas is updated as much as the drift of the reference gas. By the simulations, the proposed method is shown to compensate the drift on-line without making many categories of target gases compared with the previous studies.

  • PDF

A Design of the Fuzzy Neural Network Image Recognizer

  • Kim, Dae-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.50-57
    • /
    • 1992
  • Neural networks have become more popular recently and are now being applied to numerous fiedls. One of the major applications of neural networks is image recognition. Various image recognition system have been proposed so far, but there is no definite solution yet. In this paper, we propose a design of Fuzzy Neural Network Image Recognizer(FNNIR). Our model uses a fuzzy neural network model, named SONN[KIM90]. This model returns the information of the number of clusters and cluster and cluster center values for a given image data ste. Unlike the well-kinwn backpropagation technique, we do not need retraining for new data. Our newly designed image recongitionsystem FNNIR that uses fuzzy merger is proposed and experimented for a sample color image.

  • PDF

Simulation for the Efficient Utilization of Energy in Wireless Sensor Network (무선 센서네트워크에서의 효과적인 에너지 활용 시뮬레이션)

  • Baeg, Seung-Beom;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.33-42
    • /
    • 2005
  • One of the imminent problems to be solved within wireless sensor network is to balance out energy dissipation among deployed sensor nodes. In this paper, we present a transmission relay method of communications between BS (Base Station) and CHs (Cluster Heads) for balancing the energy consumption and extending the average lifetime of sensor nodes by the fuzzy logic application. The proposed method is designed based on LEACH protocol. The area deployed by sensor nodes is divided into two groups based on distance from BS to the nodes. RCH (Relay Cluster Head) relays transmissions from CH to BS if the CH is in the area far away from BS in order to reduce the energy consumption. RCH decides whether to relay the transmissions based on the threshold distance value that is obtained as a output of fuzzy logic system, Our simulation result shows that the application of fuzzy logic provides the better balancing of energy depletion and prolonged lifetime of the nodes.

  • PDF

Dynamic Hysteresis Model Based on Fuzzy Clustering Approach

  • Mourad, Mordjaoui;Bouzid, Boudjema
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.884-890
    • /
    • 2012
  • Hysteretic behavior model of soft magnetic material usually used in electrical machines and electronic devices is necessary for numerical solution of Maxwell equation. In this study, a new dynamic hysteresis model is presented, based on the nonlinear dynamic system identification from measured data capabilities of fuzzy clustering algorithm. The developed model is based on a Gustafson-Kessel (GK) fuzzy approach used on a normalized gathered data from measured dynamic cycles on a C core transformer made of 0.33mm laminations of cold rolled SiFe. The number of fuzzy rules is optimized by some cluster validity measures like 'partition coefficient' and 'classification entropy'. The clustering results from the GK approach show that it is not only very accurate but also provides its effectiveness and potential for dynamic magnetic hysteresis modeling.

A Study on the Classification of Ports and its Characteristics using Fuzzy C-Means (FCM법에 의한 항만의 분류 및 그 특성 분석에 관한 연구)

  • 금종수;윤명오;양원재
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.143-154
    • /
    • 2000
  • In port management, the scale of facilities and port layouts are major factors characterizing the port, which influence port economics and productivities continuously through the port operation. Grouping ports in certain region by their characteristics could be used as the principal informations to establish national policy for port development or investment and also to analyze the competitiveness between ports. Currently Korean ports are divided into two groups such as the local port and the designated port containing foreign trade port and coastal port under the Korean port law. These divisions seem to be used for port administration as the matter of convenience but some qualitative grouping is needed for research of port problems. In this paper, 20 major Korean ports were clustered by the similar characteristics using Fuzzy C-Means and found to be classified 8 qualitative groups.

  • PDF

Fuzzy Training Based on Segmentation Using Spatial Region Growing

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.353-359
    • /
    • 2004
  • This study proposes an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. In the proposed method, the image is segmented using a spatial region growing based on hierarchical clustering, and fuzzy training is then employed to find the sample classes that well represent the ground truth. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes. The experimental results show that the new scheme proposed in this study could be used to select the regions with different characteristics existed on the scene of observed image as an alternative of field survey that is so expensive.