• 제목/요약/키워드: Fuzzy Classification

검색결과 572건 처리시간 0.03초

퍼지 분류기법을 이용한 강건한 카메라 동작 추정 (Robust Estimation of Camera Motion using Fuzzy Classification Method)

  • 이중재;김계영;최형일
    • 정보처리학회논문지B
    • /
    • 제13B권7호
    • /
    • pp.671-678
    • /
    • 2006
  • 본 논문에서는 두 영상간의 대응관계로부터 퍼지 분류기법을 이용한 강건한 카메라 동작 추정 방법을 제안한다. 제안한 방법에서는 이상치가 존재할 때 정확한 카메라 동작을 추정하기 위하여 대표적인 강건 예측기법인 RANSAC 알고리즘을 사용한다. 그런데 RANSAC은 사전에 결정되는 이상치의 비율에 따라 정확도가 좌우되는 샘플링 문제점을 가지고 있다. 이러한 문제점을 개선하기 위해 샘플링 시에 퍼지 분류기법을 이용하여 전체 샘플을 좋은, 모호한, 나쁜 샘플로 분류한다. 그런 후에 좋은 데이터에 대해서만 샘플링을 수행함으로써 이상치 제거에 대한 정확도를 향상시킨다. 실험에서는 호모그래피 계산에 대한 성능을 비교함으로써 제안한 방법의 우수함을 보인다.

안전도 신호 분석을 통한 지능형 로봇 제어 기법의 개발 (Development of Intelligent Robot Control Technology By Electroocculogram Analysis)

  • 김창현;이주장;김민성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.755-762
    • /
    • 2004
  • In this research, EOG(Electrooculogram) signal was analyzed to predict the subject's intention using a fuzzy classifier. The fuzzy classifier is built automatically using the EOG data and evolutionary algorithms. An assistant robot manipulator in redundant configuration has been developed, which operates according to the EOG signal classification results. For automatic fuzzy model construction without any experts' knowledge, an evolutionary algorithm with the new representation scheme, design of adequate fitness function and evolutionary operators, is proposed. The proposed evolutionary algorithm can optimize the number of fuzzy rules, the number of fuzzy membership functions, parameter values for the each membership functions, and parameter values for the consequent parts. It is shown that the fuzzy classifier built by the proposed algorithm can classify the EOG data efficiently. Intelligent motion planner that consists of several neural networks are used for control of robot manipulator based upon EOG classification results.

Fuzzy Mean Method with Bispectral Features for Robust 2D Shape Classification

  • Woo, Young-Woon;Han, Soo-Whan
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.313-320
    • /
    • 1999
  • In this paper, a translation, rotation and scale invariant system for the classification of closed 2D images using the bispectrum of a contour sequence and the weighted fuzzy mean method is derived and compared with the classification process using one of the competitive neural algorithm, called a LVQ(Learning Vector Quantization). The bispectrun based on third order cumulants is applied to the contour sequences of the images to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images and are fed into an classifier using weighted fuzzy mean method. The experimental processes with eight different shapes of aircraft images are presented to illustrate the high performance of the proposed classifier.

  • PDF

An Edge Detection Method by Using Fuzzy 2-Mean Classification and Template Matching

  • Kang, C.C.;Lee, P.J.;Wang, W.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1315-1318
    • /
    • 2004
  • Based on fuzzy 2-mean classification and template matching method, we propose a new algorithm to detect the edges of an image. In the algorithm, fuzzy 2-mean classification can classify all pixels in the mask into two clusters whatever the mask in the dark or light region; and template matching not only determines the edge's direction, but also thins the detected edge by a set of inference rules and, by the way, reduces the impulse noises.

  • PDF

퍼지분류기를 이용한 인간의 행동분류 (Behavior-classification of Human Using Fuzzy-classifier)

  • 김진규;주영훈
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2314-2318
    • /
    • 2010
  • For human-robot interaction, a robot should recognize the meaning of human behavior. In the case of static behavior such as face expression and sign language, the information contained in a single image is sufficient to deliver the meaning to the robot. In the case of dynamic behavior such as gestures, however, the information of sequential images is required. This paper proposes behavior classification by using fuzzy classifier to deliver the meaning of dynamic behavior to the robot. The proposed method extracts feature points from input images by a skeleton model, generates a vector space from a differential image of the extracted feature points, and uses this information as the learning data for fuzzy classifier. Finally, we show the effectiveness and the feasibility of the proposed method through experiments.

Adaptive Fuzzy Inference Algorithm for Shape Classification

  • Kim, Yoon-Ho;Ryu, Kwang-Ryol
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.611-618
    • /
    • 2000
  • This paper presents a shape classification method of dynamic image based on adaptive fuzzy inference. It describes the design scheme of fuzzy inference algorithm which makes it suitable for low speed systems such as conveyor, uninhabited transportation. In the first Discrete Wavelet Transform(DWT) is utilized to extract the motion vector in a sequential images. This approach provides a mechanism to simple but robust information which is desirable when dealing with an unknown environment. By using feature parameters of moving object, fuzzy if - then rule which can be able to adapt the variation of circumstances is devised. Then applying the implication function, shape classification processes are performed. Experimental results are presented to testify the performance and applicability of the proposed algorithm.

  • PDF

Kano 모형에 기반한 소비자 요구사항 분류: 퍼지 접근방법 (Fuzzy KANO Model: Fuzzy Set-Based Classification of Customer Requirements)

  • 임정훈;민대기;김광재
    • 품질경영학회지
    • /
    • 제31권3호
    • /
    • pp.98-113
    • /
    • 2003
  • Kano model distinguishes three types of customer requirements, namely, one-dimensional quality, must-be quality, and attractive quality. There are a few methods for classifying a given customer requirement into one of the Kano's quality elements. However, the existing methods have a common limitation in that they are based on Kano evaluation table. Kano evaluation table is not always effective for the classification task, and suffers from a significant information loss. This paper proposes an alternative to Kano's evaluation table and a new classification scheme based on fuzzy set concept. The proposed method is illustrated using a case study on the ADSL service.

점증적 학습 퍼지 신경망을 이용한 적응 분류 모델 (An Adaptive Classification Model Using Incremental Training Fuzzy Neural Networks)

  • 이현숙
    • 한국지능시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.736-741
    • /
    • 2006
  • 분류 시스템은 데이터 전처리 모듈, 학습모듈, 의사결정모듈로 구성되어 있으며 지능형시스템의 중요한 구성요소로 활용되어왔다. 특히 학습모듈은 사전정보를 제공하므로 분류를 위한 핵심 역할을 수행하여 왔다. 기존의 학습을 위한 기법은 주로 승자독점방식으로 데이터를 처리하므로 경계가 불명확한 대부분의 실세계 응용에 적합하지 못하다. 또한 학습 알고리즘에 필요한 데이터를 한꺼번에 준비해야 하지만 이는 일반적으로 가능하지 않은 경우가 많다. 이를 위하여 본 논문에서는 점증적 학습 퍼지신경망, FNN-I,를 이용한 적응 분류모델을 설계한다. 이 모델에서는 유용하게 정보를 표현하기 위하여 퍼지이론을 도입하고 계속적으로 모여지는 데이터를 가지고 점증적으로 학습할 수 있는 알고리즘을 제시한다. 제안된 모델을 컴퓨터 바이러스 분류를 위한 실제 데이터에 적용하여 점증적으로 학습할 수 있고 효과적으로, 새로운 바이러스 데이터를 분류할 수 있음을 보인다.

Fuzzy C-Mean 알고리즘을 이용한 중합 영상의 토지피복분류기법 연구 (A Study of Land-Cover Classification Technique for Merging Image Using Fuzzy C-Mean Algorithm)

  • 신석효;안기원;양경주
    • 한국측량학회지
    • /
    • 제22권2호
    • /
    • pp.171-178
    • /
    • 2004
  • 원격탐사의 장점 중 하나는 넓은 지역의 정량적이고 정성적인 정보를 신속하게 추출할 수 있는 것이다. 그것은 넓은 지역의 토지피복을 분류하여 자원 및 환경을 신속하고 정확하게 파악하는 효과적인 수단이다. 따라서 본 연구에서는 알고리즘 개발을 통하여 더 나은 토지피복분류 방법을 제시하고자 하였다. 연구내용으로는 정형화된 토지피복분류방법인 최대우도법을 수행하고, 새로운 FCM 알고리즘을 이용한 영상분류를 수행하여 두 방법의 분류정확도를 비교 평가하였다. 또한 이용된 영상들은 한국항공우주연구원에서 매일 실시간으로 수신하고 있기 때문에 시간과 비용면에서 경제적인 위성영상을 이용하였다. 해상력은 다소 떨어지는 다파장대(36개 bands)의 MODIS 위성영상과 단 밴드인 KOMPSAT-1 EOC 위성영상을 이용하여 중합영상을 생성하여 토지피복분류에 이용하였다.

Vegetation Classification Using Seasonal Variation MODIS Data

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Son, Yo-Whan;Kojima, Toshiharu;Muraoka, Hiroyuki
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.665-673
    • /
    • 2010
  • The role of remote sensing in phenological studies is increasingly regarded as a key in understanding large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for vegetation classification using seasonal variation patterns. The vegetation seasonal variation phase of Seoul and provinces in Korea was inferred using 8 day composite MODIS NDVI (Normalized Difference Vegetation Index) dataset of 2006. The seasonal vegetation classification approach is performed with reclassification of 4 categories as urban, crop land, broad-leaf and needle-leaf forest area. The BISE (Best Index Slope Extraction) filtering algorithm was applied for a smoothing processing of MODIS NDVI time series data and fuzzy classification method was used for vegetation classification. The overall accuracy of classification was 77.5% and the kappa coefficient was 0.61%, thus suggesting overall high classification accuracy.