• Title/Summary/Keyword: Fuzzy Classification

Search Result 572, Processing Time 0.026 seconds

Integrity Assessment Models for Bridge Structures Using Fuzzy Decision-Making (퍼지의사결정을 이용한 교량 구조물의 건전성평가 모델)

  • 안영기;김성칠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1022-1031
    • /
    • 2002
  • This paper presents efficient models for bridge structures using CART-ANFIS (classification and regression tree-adaptive neuro fuzzy inference system). A fuzzy decision tree partitions the input space of a data set into mutually exclusive regions, each region is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it continuous and smooth everywhere. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

TS Fuzzy Classifier Using A Linear Matrix Inequality (선형 행렬 부등식을 이용한 TS 퍼지 분류기 설계)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • his paper presents a novel design technique for the TS fuzzy classifier via linear matrix inequalities(LMI). To design the TS fuzzy classifier built by the TS fuzzy model, the consequent parameters are determined to maximize the classifier's performance. Differ from the conventional fuzzy classifier design techniques, convex optimization technique is used to resolve the determination problem. Consequent parameter identification problems are first reformulated to the convex optimization problem. The convex optimization problem is then efficiently solved by converting linear matrix inequality problems. The TS fuzzy classifier has the optimal consequent parameter via the proposed design procedure in sense of the minimum classification error. Simulations are given to evaluate the proposed fuzzy classifier; Iris data classification and Wisconsin Breast Cancer Database data classification. Finally, simulation results show the utility of the integrated linear matrix inequalities approach to design of the TS fuzzy classifier.

Coupled data classification method using unsupervised learning and fuzzy logic in Cloud computing environment (클라우드 컴퓨팅 환경에서 무감독학습 방법과 퍼지이론을 이용한 결합형 데이터 분류기법)

  • Cho, Kyu-Cheol;Kim, Jae-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.11-18
    • /
    • 2014
  • In This paper, we propose the unsupervised learning and fuzzy logic-based coupled data classification method base on ART. The unsupervised learning-based data classification helps improve the grouping technique, but decreases the processing efficiency. However, the data classification requires the decision technique to induce high success rate of data classification with optimal threshold. Therefore it is also necessary to solve the uncertainty of the threshold decision. The proposed method deduces the optimal threshold with the designing of fuzzy parameter and rules. In order to evaluate the proposed method, we design the simulation model with the GPCR(G protein coupled receptor) data in cloud computing environment. Simulation results verify the efficiency of our method with the high recognition rate and low processing time.

A Novel Algorithm for Fault Classification in Transmission Lines using a Combined Adaptive Network-based Fuzzy Inference System (Neuro-fuzzy network을 이용한 고장 검출 및 판별 알고리즘에 관한 연구)

  • Yeo, S.M.;Kim, C.H.;Chai, Y.M.;Choi, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.252-254
    • /
    • 2001
  • Accurate detection and classification of faults on transmission lines is vitally important. High impedance faults(HIF) in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if not detected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System(ANFIS). The performance of the proposed algorithm is tested on a typical 154[kV] Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classify faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

A Study on the Technique of Fault Classification in Transmission Lines Using a Combined Adaptive Network-Based Fuzzy Inference System (ANFIS를 이용한 송전선로의 고장판별 기법에 관한 연구)

  • Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.417-423
    • /
    • 2001
  • This paper proposes a technique for fault detection and classification for both LIF(Low Impedance Fault)s and HIF(High Impedance Fault)s using Adaptive Network-based Fuzzy Inference System(ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square(RMS) values of 3-phase currents and zero sequence current. The performance of the proposed technique is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classily faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

A study of Land-Cover Classification technique Using Fuzzy C-Mean Algorithm (Fuzzy C-Mean 알고리즘을 이용한 토지피복분류기법 연구)

  • 신석효;안기원;이주원;김상철
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.267-273
    • /
    • 2004
  • The advantage of the remote sensing is extraction the information of wide area rapidly. Such advantage is the resource and environment are quick and efficient method to grasps accurately method through the land cover classification of wide area. Accordingly this study is used to the high-resolution (6.6m) Electro-Optical Camera (EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1 (KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data(36 bands).We accomplished FCM classification technique with MLC technique to be general land cover classification method in the content of research. And evaluated the accuracy assessment of two classification method.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

Feature Impact Evaluation Based Pattern Classification System

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.25-30
    • /
    • 2018
  • Pattern classification system is often an important component of intelligent systems. In this paper, we present a pattern classification system consisted of the feature selection module, knowledge base construction module and decision module. We introduce a feature impact evaluation selection method based on fuzzy cluster analysis considering computational approach and generalization capability of given data characteristics. A fuzzy neural network, OFUN-NET based on unsupervised learning data mining technique produces knowledge base for representative clusters. 240 blemish pattern images are prepared and applied to the proposed system. Experimental results show the feasibility of the proposed classification system as an automating defect inspection tool.

Classification of Proximity Relational Using Multiple Fuzzy Alpha Cut(MFAC) (MFAC를 사용한 근접관계의 분류)

  • Ryu, Kyung-Hyun;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.139-144
    • /
    • 2008
  • Generally, real system that is the object of decision-making is very variable and sometimes it lies situations with uncertainty. To solve these problem, it has used statistical methods as significance level, certainty factor, sensitivity analysis and so on. In this paper, we propose a method for fuzzy decision-making based on MFAC(Multiple Fuzzy Alpha Cut) to improve the definiteness of classification results with similarity evaluation. In the proposed method, MFAC is used for extracting multiple a ${\alpha}$-level with proximity degree at proximity relation between relative Hamming distance and max-min method and for minimizing the number of data which are associated with the partition intervals extracted by MFAC. To determine final alternative of decision-making, we compute the weighted value between extracted data by MFAC From the experimental results, we can see the fact that the proposed method is simpler and more definite than classification performance of the conventional methods and determines an alternative efficiently for decision-maker by testing significance of sample data through statistical method.

Design of a Fuzzy Classifier by Repetitive Analyses of Multifeatures (다중 특징의 반복적 분석에 의한 퍼지 분류기의 설계)

  • 신대정;나승유
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.14-24
    • /
    • 1996
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation ation padptu sing genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusior~ or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to three examples of the classification of iris data, the discrimination of thyroid gland cancer cells and the recognition of confusing handwritten and printed numerals. In the recognition of confusing handwritten and printed numerals, each sample numeral is classified into one of the groups which are divided according to the sample structure. The fuzzy classifier proposed in this paper has recognition rates of 98. 67% for iris data, 98.25% for thyroid gland cancer cells and 96.3% for confusing handwritten and printed numeral!;.

  • PDF