• Title/Summary/Keyword: Fuzzy C_Means

Search Result 449, Processing Time 0.026 seconds

Region-based Multi-level Thresholding for Color Image Segmentation (영역 기반의 Multi-level Thresholding에 의한 컬러 영상 분할)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.20-27
    • /
    • 2006
  • Multi-level thresholding is a method that is widely used in image segmentation. However most of the existing methods are not suited to be directly used in applicable fields and moreover expanded until a step of image segmentation. This paper proposes region-based multi-level thresholding as an image segmentation method. At first we classify pixels of each color channel to two clusters by using EWFCM(Entropy-based Weighted Fuzzy C-Means) algorithm that is an improved FCM algorithm with spatial information between pixels. To obtain better segmentation results, a reduction of clusters is then performed by a region-based reclassification step based on a similarity between regions existing in a cluster and the other clusters. The clusters are created using the classification information of pixels according to color channel. We finally perform a region merging by Bayesian algorithm based on Kullback-Leibler distance between a region and the neighboring regions as a post-processing method as many regions still exist in image. Experiments show that region-based multi-level thresholding is superior to cluster-, pixel-based multi-level thresholding, and the existing mettled. And much better segmentation results are obtained by the post-processing method.

Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification (명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할)

  • Kim, Min-Jeong;Lee, Joung-Min;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.

Copyright Protection for Fire Video Images using an Effective Watermarking Method (효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호)

  • Nguyen, Truc;Kim, Jong-Myon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.579-588
    • /
    • 2013
  • This paper proposes an effective watermarking approach for copyright protection of fire video images. The proposed watermarking approach efficiently utilizes the inherent characteristics of fire data with respect to color and texture by using a gray level co-occurrence matrix (GLCM) and fuzzy c-means (FCM) clustering. GLCM is used to generate a texture feature dataset by computing energy and homogeneity properties for each candidate fire image block. FCM is used to segment color of the fire image and to select fire texture blocks for embedding watermarks. Each selected block is then decomposed into a one-level wavelet structure with four subbands [LL, LH, HL, HH] using a discrete wavelet transform (DWT), and LH subband coefficients with a gain factor are selected for embedding watermark, where the visibility of the image does not affect. Experimental results show that the proposed watermarking approach achieves about 48 dB of high peak-signal-to-noise ratio (PSNR) and 1.6 to 2.0 of low M-singular value decomposition (M-SVD) values. In addition, the proposed approach outperforms conventional image watermarking approach in terms of normalized correlation (NC) values against several image processing attacks including noise addition, filtering, cropping, and JPEG compression.

Quality monitoring of complex manufacturing systems on the basis of model driven approach

  • Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.495-506
    • /
    • 2020
  • Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.

Fuzzy Algorithm Development for the Integration of Vehicle Simulator with All Terrain Unmanned Vehicle (험로 주행용 무인차량과 차량 시뮬레이터의 융합을 위한 퍼지 알고리즘 개발)

  • Yun, Duk-Sun;Yu, Hwan-Sin;Lim, Ha-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.47-57
    • /
    • 2005
  • In this research, the main theme is the system integration of driving simulator and unmanned vehicle. The total system is composed of the mater system and the slave system. The master system has a cockpit system and the driving simulator. The slave system means an unmanned vehicle, which is composed of the actuator system the sensory system and the vision system. The communication system is composed of RS-232C serial communication system which combines the master system with the slave system. To integrate both systems, the signal classification and system characteristics considered DSP(Digital Signal Processing) filter is designed with signal sampling and measurement theory. In addition, to simulate the motion of tele-operated unmanned vehicle on the driving simulator, the classical washout algorithm is applied to this filter, because the unmanned vehicle does not have a limited working space, while the driving simulator has a narrow working space and it is difficult to cover all the motion of the unmanned vehicle. Because the classical washout algorithm has a defect of fixed high pass later, fuzzy logic is applied to reimburse it through an adaptive filter and scale factor for realistic motion generation on the driving simulator.

  • PDF

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.

Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm ((2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jin, Yong-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm (최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계)

  • Oh, Sung-Kwun;Ma, Chang-Min;Yoo, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 2011
  • In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.

Increasing Spatial Resolution of Remotely Sensed Image using HNN Super-resolution Mapping Combined with a Forward Model

  • Minh, Nguyen Quang;Huong, Nguyen Thi Thu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.559-565
    • /
    • 2013
  • Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.