Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.6
s.312
/
pp.20-27
/
2006
Multi-level thresholding is a method that is widely used in image segmentation. However most of the existing methods are not suited to be directly used in applicable fields and moreover expanded until a step of image segmentation. This paper proposes region-based multi-level thresholding as an image segmentation method. At first we classify pixels of each color channel to two clusters by using EWFCM(Entropy-based Weighted Fuzzy C-Means) algorithm that is an improved FCM algorithm with spatial information between pixels. To obtain better segmentation results, a reduction of clusters is then performed by a region-based reclassification step based on a similarity between regions existing in a cluster and the other clusters. The clusters are created using the classification information of pixels according to color channel. We finally perform a region merging by Bayesian algorithm based on Kullback-Leibler distance between a region and the neighboring regions as a post-processing method as many regions still exist in image. Experiments show that region-based multi-level thresholding is superior to cluster-, pixel-based multi-level thresholding, and the existing mettled. And much better segmentation results are obtained by the post-processing method.
Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.
KIPS Transactions on Software and Data Engineering
/
v.2
no.8
/
pp.579-588
/
2013
This paper proposes an effective watermarking approach for copyright protection of fire video images. The proposed watermarking approach efficiently utilizes the inherent characteristics of fire data with respect to color and texture by using a gray level co-occurrence matrix (GLCM) and fuzzy c-means (FCM) clustering. GLCM is used to generate a texture feature dataset by computing energy and homogeneity properties for each candidate fire image block. FCM is used to segment color of the fire image and to select fire texture blocks for embedding watermarks. Each selected block is then decomposed into a one-level wavelet structure with four subbands [LL, LH, HL, HH] using a discrete wavelet transform (DWT), and LH subband coefficients with a gain factor are selected for embedding watermark, where the visibility of the image does not affect. Experimental results show that the proposed watermarking approach achieves about 48 dB of high peak-signal-to-noise ratio (PSNR) and 1.6 to 2.0 of low M-singular value decomposition (M-SVD) values. In addition, the proposed approach outperforms conventional image watermarking approach in terms of normalized correlation (NC) values against several image processing attacks including noise addition, filtering, cropping, and JPEG compression.
Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
Smart Structures and Systems
/
v.26
no.4
/
pp.495-506
/
2020
Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.
In this research, the main theme is the system integration of driving simulator and unmanned vehicle. The total system is composed of the mater system and the slave system. The master system has a cockpit system and the driving simulator. The slave system means an unmanned vehicle, which is composed of the actuator system the sensory system and the vision system. The communication system is composed of RS-232C serial communication system which combines the master system with the slave system. To integrate both systems, the signal classification and system characteristics considered DSP(Digital Signal Processing) filter is designed with signal sampling and measurement theory. In addition, to simulate the motion of tele-operated unmanned vehicle on the driving simulator, the classical washout algorithm is applied to this filter, because the unmanned vehicle does not have a limited working space, while the driving simulator has a narrow working space and it is difficult to cover all the motion of the unmanned vehicle. Because the classical washout algorithm has a defect of fixed high pass later, fuzzy logic is applied to reimburse it through an adaptive filter and scale factor for realistic motion generation on the driving simulator.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.1
/
pp.91-96
/
2015
In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.1
/
pp.195-201
/
2014
In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.5
/
pp.487-496
/
2000
In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.6
/
pp.749-754
/
2011
In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.31
no.6_2
/
pp.559-565
/
2013
Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.