• Title/Summary/Keyword: Fuzzy C-means clustering

Search Result 310, Processing Time 0.024 seconds

Analytical Study of Fuzzy Clustering Technique for Automatic Term Classification (용어 자동분류를 위한 퍼지 클러스터링 기법 분석)

  • 한승희
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.95-103
    • /
    • 2003
  • 목차 및 권말색인과 같은 인쇄형태의 정보내용에 대한 구조화된 접근방식에서 착안하여 전자 문서의 내용에 대한 새로운 형태의 접근방식을 개발할 수 있는데, 이를 위한 방안으로 용어 자동분류 기법이 있다. 본 연구에서는 용어의 의미모호성 문제를 해결하는 동시에 용어간 계층관계 표현이 가능한 자동분류 기법으로 퍼지 클러스터링 기법을 제안하고, 대표적인 퍼지 클러스터링 알고리즘인 퍼지 c-means 기법에 대해 분석하고자 한다.

  • PDF

A Clustering Algorithm using the Genetic Algorithm (진화알고리즘을 이용한 클러스터링 알고리즘)

  • 류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.313-315
    • /
    • 2000
  • 클러스터링에 있어서 K-means와 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최소 해에 수렴될 문제와 사전에 클러스터 개수를 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적 해를 찾는 진화 알고리즘을 사용하여 지역적 최소 해에 수렴되는 문제점을 개선하였으며, 클러스터의 특성을 표준편차 벡터를 계산하여 중심으로부터 포함된 데이터가 얼마나 분포되어 있는지 알 수 있는 분산도와 임의의 데이터와 모든 중심들간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터간의 간격을 알 수 있는 분리도를 정의함으로써 자동으로 클러스터 개수를 결정할 수 있게 하였다. 실험데이터와 가우시안 분포에 의해 생성된 다차원 실험데이터를 사용하여 제안한 알고리즘이 이러한 문제점들을 해결하고 있음을 보인다.

  • PDF

Computational Vision and Fuzzy Systems Laboratory (무기본형 기초의 퍼지 클러스터링에 대한 빠른 접근)

  • Hwang, Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.1-4
    • /
    • 2000
  • 본 논문에서는 패턴 데이터(pattern data) 의 분할(partitioning)위하여, 계산량의 단축할 수 있는 효과적인 퍼지 클러스터링 알고리즘(fuzzy clustering algorithm)을 제시한다. 본 논문에 제시된 알고리즘은 두 단계로 수행된다. 첫번째 단계는, 개선된 FCM(Fuzzy C-means)방법에 의해 입력 패턴틀에 대해, 단지 두 번의 반복 수행과정만을 거쳐, 충분히 많은 개수의 초기 클러스터 중 심(center)를 결정한다. 다음 단계에서는, 본 논문에 제시될 클러스터 합치기 알고리즘(cluster merging algorithm)을 통해 각 클러스터의 부피(volume)에 따라 클러스터들을 합치는 과정(merging process)을 하게 된다. 결과적으로 일정한 제한된 개수의 무정형(amorphous)의 클러스터틀의 효과적으로 표현될 수 있다. 본 논문의 마지막에 제시될 실험 결과들은 제시된 방법의 유용성을 보여줄 것이다.

  • PDF

Development of Economical Run Model for High Speed Rolling stock 350 experimental (한국형 고속열차 경계운전 모형 개발)

  • Lee, Tae-Hyung;Park, Choon-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.238-240
    • /
    • 2005
  • The Optimization has been performed to search an economical running pattern in the view point of trip time and energy consumption. Fuzzy control model have been applied to build the meta-model. To identify the structure and its parameters of a fuzzy model, fuzzy c-means clustering method and differential evolutionary scheme are utilized, respectively. As a result, two meta-models for trip time and energy consumption were constructed. The optimization to search an economical running pattern was achieved by differential evolutionary scheme. The result shows that the proposed methodology is very efficient and conveniently applicable to the operation of railway system.

  • PDF

Context-Aware Security Service using FCM Clustering and Multivariate Fuzzy Decision Tree (FCM 클러스터링과 다변량 퍼지결정트리를 이용한 상황인식 보안 서비스)

  • Yang, Seokhwan;Chung, Mokdong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1527-1530
    • /
    • 2009
  • 유비쿼터스 환경의 확산에 따른 다양한 보안문제의 발생은 센서의 정보를 이용한 상황인식 보안 서비스의 필요성을 증대시키고 있다. 본 논문에서는 FCM (Fuzzy C-Means) 클러스터링과 다변량 퍼지 결정트리 (Multivariate Fuzzy Decision Tree)를 이용하여 센서의 정보를 분류함으로써 사용자의 상황을 인식하고, 사용자가 처한 상황에 따라 다양한 수준의 보안기술을 유연하게 적용할 수 있는 상황인식 보안 서비스를 제안한다. 제안 모델은 기존에 많이 연구되어 오던 고정된 규칙을 기반으로 하는 RBAC(Role-Based Access Control)계열의 모델보다 더욱 유연하고 적합한 결과를 보여주고 있다.

Feature Extraction based FE-SONN for Signature Verification (서명 검증을 위한 특정 기반의 FE-SONN)

  • Koo Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.93-102
    • /
    • 2005
  • This paper proposes an approach to verify signature using autonomous self-organized Neural Network Model , fused with fuzzy membership equation of fuzzy c-means algorithm, based on the features of the signature. To overcome limitations of the functional approach and Parametric approach among the conventional on-line signature recognition approaches, this Paper presents novel autonomous signature classification approach based on clustering features. Thirty-six globa1 features and twelve local features were defined, so that a signature verifying system with FE-SONN that learns them was implemented. It was experimented for total 713 signatures that are composed of 155 original signatures and 180 forged signatures yet 378 original signatures written by oneself. The success rate of this test is more than 97.67$\%$ But, a few forged signatures that could not be detected by human eyes could not be done by the system either.

  • PDF

A Study on Efficiency and Productivity Analysis of Mokpo Port -DEA model and FCM combined analysis- (목포항의 효율성 및 생산성 분석에 관한 연구 -DEA모형과 FCM을 결합분석법-)

  • Kim, Sam-Youl;Choi, Kyoung-Hoon;Pham, Thi Quynh Mai
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.1
    • /
    • pp.183-196
    • /
    • 2020
  • Until now, there have been few studies analyzing the efficiency of the Port of Mokpo and comparing it with other seaports in the country to identify the future direction of development for the port. In this paper, we use the data envelopment analysis (DEA) model in combination with the Malmquist Productivity Index (MPI) to measure the efficiency and productivity of major ports in Korea, focusing on the Port of Mokpo. First, the study identifies which ports are efficient or inefficient based on technical or operational scale. Second, by using the MPI to overcome the shortfalls of the DEA model, the study can compare a port's performance across the years and evaluate the productivity of a port during the research period. Moreover, this study also applies fuzzy C-means (FCM) clustering to classify port groups based on the size of their infrastructure and their efficiency scores. Finally, it is possible to find ways to enhance the efficiency and future direction of development of the Port of Mokpo.

Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification (명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할)

  • Kim, Min-Jeong;Lee, Joung-Min;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.

Facial expression recognition based on pleasure and arousal dimensions (쾌 및 각성차원 기반 얼굴 표정인식)

  • 신영숙;최광남
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 2003
  • This paper presents a new system for facial expression recognition based in dimension model of internal states. The information of facial expression are extracted to the three steps. In the first step, Gabor wavelet representation extracts the edges of face components. In the second step, sparse features of facial expressions are extracted using fuzzy C-means(FCM) clustering algorithm on neutral faces, and in the third step, are extracted using the Dynamic Model(DM) on the expression images. Finally, we show the recognition of facial expression based on the dimension model of internal states using a multi-layer perceptron. The two dimensional structure of emotion shows that it is possible to recognize not only facial expressions related to basic emotions but also expressions of various emotion.

  • PDF

Analysis of Physiological Responses and Use of Fuzzy Information Granulation-Based Neural Network for Recognition of Three Emotions

  • Park, Byoung-Jun;Jang, Eun-Hye;Kim, Kyong-Ho;Kim, Sang-Hyeob
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1231-1241
    • /
    • 2015
  • In this study, we investigate the relationship between emotions and the physiological responses, with emotion recognition, using the proposed fuzzy information granulation-based neural network (FIGNN) for boredom, pain, and surprise emotions. For an analysis of the physiological responses, three emotions are induced through emotional stimuli, and the physiological signals are obtained from the evoked emotions. To recognize the emotions, we design an FIGNN recognizer and deal with the feature selection through an analysis of the physiological signals. The proposed method is accomplished in premise, consequence, and aggregation design phases. The premise phase takes information granulation using fuzzy c-means clustering, the consequence phase adopts a polynomial function, and the aggregation phase resorts to a general fuzzy inference. Experiments show that a suitable methodology and a substantial reduction of the feature space can be accomplished, and that the proposed FIGNN has a high recognition accuracy for the three emotions using physiological signals.