• Title/Summary/Keyword: Fuzzy C-Means Data Clustering

Search Result 174, Processing Time 0.019 seconds

Improvement on Fuzzy C-Means Using Principal Component Analysis

  • Choi, Hang-Suk;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.301-309
    • /
    • 2006
  • In this paper, we show the improved fuzzy c-means clustering method. To improve, we use the double clustering as principal component analysis from objects which is located on common region of more than two clusters. In addition we use the degree of membership (probability) of fuzzy c-means which is the advantage. From simulation result, we find some improvement of accuracy in data of the probability 0.7 exterior and interior of overlapped area.

  • PDF

Clustering of Incomplete Data Using Autoencoder and fuzzy c-Means Algorithm (AutoEncoder와 FCM을 이용한 불완전한 데이터의 군집화)

  • 박동철;장병근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.700-705
    • /
    • 2004
  • Clustering of incomplete data using the Autoencoder and the Fuzzy c-Means(PCM) is proposed in this paper. The Proposed algorithm, called Optimal Completion Autoencoder Fuzzy c-Means(OCAEFCM), utilizes the Autoencoder Neural Network (AENN) and the Gradiant-based FCM (GBFCM) for optimal completion of missing data and clustering of the reconstructed data. The proposed OCAEFCM is applied to the IRIS data and a data set from a financial institution to evaluate the performance. When compared with the existing Optimal Completion Strategy FCM (OCSFCM), the OCAEFCM shows 18%-20% improvement of performance over OCSFCM.

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

A Fast K-means and Fuzzy-c-means Algorithms using Adaptively Initialization (적응적인 초기치 설정을 이용한 Fast K-means 및 Frizzy-c-means 알고리즘)

  • 강지혜;김성수
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.516-524
    • /
    • 2004
  • In this paper, the initial value problem in clustering using K-means or Fuzzy-c-means is considered to reduce the number of iterations. Conventionally the initial values in clustering using K-means or Fuzzy-c-means are chosen randomly, which sometimes brings the results that the process of clustering converges to undesired center points. The choice of intial value has been one of the well-known subjects to be solved. The system of clustering using K-means or Fuzzy-c-means is sensitive to the choice of intial values. As an approach to the problem, the uniform partitioning method is employed to extract the optimal initial point for each clustering of data. Experimental results are presented to demonstrate the superiority of the proposed method, which reduces the number of iterations for the central points of clustering groups.

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

Analysis of Cone Penetration Data Using Fuzzy C-means Clustering (Fuzzy C-means 클러스터링 기법을 이용한 콘 관입 데이터의 해석)

  • 우철웅;장병욱;원정윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.73-83
    • /
    • 2003
  • Methods of fuzzy C-means have been used to characterize geotechnical information from static cone penetration data. As contrary with traditional classification methods such as Robertson classification chart, the FCM expresses classes not conclusiveness but fuzzy. The results show that the FCM is useful to characterize ground information that can not be easily found by using normal classification chart. But optimal number of classes may not be easily defined. So, the optimal number of classes should be determined considering not only technical measures but engineering aspects.

Cluster Merging Using Enhanced Density based Fuzzy C-Means Clustering Algorithm (개선된 밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병)

  • Han, Jin-Woo;Jun, Sung-Hae;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.517-524
    • /
    • 2004
  • The fuzzy set theory has been wide used in clustering of machine learning with data mining since fuzzy theory has been introduced in 1960s. In particular, fuzzy C-means algorithm is a popular fuzzy clustering algorithm up to date. An element is assigned to any cluster with each membership value using fuzzy C-means algorithm. This algorithm is affected from the location of initial cluster center and the proper cluster size like a general clustering algorithm as K-means algorithm. This setting up for initial clustering is subjective. So, we get improper results according to circumstances. In this paper, we propose a cluster merging using enhanced density based fuzzy C-means clustering algorithm for solving this problem. Our algorithm determines initial cluster size and center using the properties of training data. Proposed algorithm uses grid for deciding initial cluster center and size. For experiments, objective machine learning data are used for performance comparison between our algorithm and others.

A Density Estimation based Fuzzy C-means Algorithm for Image Segmentation (영상분할을 위한 밀도추정 바탕의 Fuzzy C-means 알고리즘)

  • Ko, Jeong-Won;Choi, Byung-In;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.196-201
    • /
    • 2007
  • The Fuzzy E-means (FCM) algorithm is a widely used clustering method that incorporates probabilitic memberships. Due to these memberships, it can be sensitive to noise data. In this paper, we propose a new fuzzy C-means clustering algorithm by incorporating the Parzen Window method to include density information of the data. Several experimental results show that our proposed density-based FCM algorithm outperforms conventional FCM especially for data with noise and it is not sensitive to initial cluster centers.

Program Development of Integrated Expression Profile Analysis System for DNA Chip Data Analysis (DNA칩 데이터 분석을 위한 유전자발연 통합분석 프로그램의 개발)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2001
  • A program for integrated gene expression profile analysis such as hierarchical clustering, K-means, fuzzy c-means, self-organizing map(SOM), principal component analysis(PCA), and singular value decomposition(SVD) was made for DNA chip data anlysis by using Matlab. It also contained the normalization method of gene expression input data. The integrated data anlysis program could be effectively used in DNA chip data analysis and help researchers to get more comprehensive analysis view on gene expression data of their own.

  • PDF

A Kernel based Possibilistic Approach for Clustering and Image Segmentation (클러스터링 및 영상 분할을 위한 커널 기반의 Possibilistic 접근 방법)

  • Choi, Kil-Soo;Choi, Byung-In;Rhee, Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.889-894
    • /
    • 2004
  • The fuzzy kernel c-means (FKCM) algorithm, which uses a kernel function, can obtain more desirable clustering results than fuzzy c-means (FCM) for not only spherical data but also non-spherical data. However, it can be sensitive to noise as in the FCM algorithm. In this paper, a kernel function is applied to the possibilistic c-means (PCM) algorithm and is shown to be robust for data with additive noise. Several experimental results show that the proposed kernel possibilistic c-means (KPCM) algorithm out performs the FKCM algorithm for general data with additive noise.