• Title/Summary/Keyword: Fuze Part

Search Result 4, Processing Time 0.018 seconds

A Research on the MIM Process of High-Precision Fuze Parts (고정밀 신관 부품의 MIM 공정에 관한 연구)

  • Seo, Jung-Hwa;Kang, Kyeoung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2012
  • During the past two decades, Metal Injection Molding(MIM) has become a very competitive technology to fabricate small, precise and complex-shaped parts in large quantities. In this research, the applicability of MIM technology in the mass-production of the high precision fuze parts to save manufacturing cost was investigated. The water-atomized 17-4PH stainless steel powder, one of the best corrosion-resistant high strength materials, was injection-molded into real-shape fuze part and flat tensile specimens. The injection-molded parts were thermally debound in hydrogen gas flow without solvent extraction. Sintering of the debound parts was carried out in vacuum at temperatures ranging from $1150^{\circ}C$ to $1370^{\circ}C$. The sintering behavior, mechanical properties, dimensional precision, corrosion resistance of the MIMed 17-4PH stainless parts were investigated. It was found that almost all the properties of the MIMed parts were comparable to those of the mechanically machined parts. Also, actual military field tests using both MIMed and mechanically machined fuze parts were performed as well and were found to be very successful.

A miniaturized turn-counting sensor using geomagnetism for small-caliber ammunition fuzes (지구자기장을 이용한 소구경 탄약 신관용 소형 회전수 계수 센서)

  • Yoon, Sang-Hee;Lee, Seok-Woo;Lee, Young-Ho;Oh, Jong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • This paper presents a miniaturized turn-counting sensor (TCS) where the geomagnetism and high-rpm rotation of ammunition are used to detect the turn number of ammunition for applications to small-caliber turn-counting fuzes. The TCS, composed of cores and a coil, has a robust structure with no moving part for increasing the shock survivability in the gunfire environments of ${\sim}30,000$ g's. The TCS is designed on the basis of the simulation results of an electromagnetic analysis tool, $Maxwell^{(R)}$3D. In experimental study, the static TCS test using a solenoid-coil apparatus and the dynamic TCS test (firing test) have been made. The presented TCS has shown that the induction voltage of $6.5{\;}mV_{P-P}$ is generated at the magnetic flux density of 0.05 mT and the rotational velocity of 30,000 rpm. From the measured signal, the TCS has shown the SNR of 44.0 dB, the nonlinearity of 0.59 % and the frequency-normalized sensitivity of $0.26{\pm}0.01{\;}V/T{\cdot}Hz$ in the temperature range of $-30{\sim}+43^{\circ}C$. Firing test has shown that the TCS can be used as a turn-counting sensor for small-caliber ammunition, verifying the shock survivability of TCS in high-g environments.

A Study on the Shelf-Life Prediction of the Domestic Single Base Propellants Ammunition : Based on 105mm High Explosive Propellants (국내 단기추진제 탄약의 저장수명 예측에 관한 연구 : 105미리 고폭탄 추진체를 중심으로)

  • Choi, Myoungjin;Park, Hyungju;Yang, Jaekyung;Baek, Janghyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.36-42
    • /
    • 2014
  • Domestic 105mm HE (High Explosive) shell is composed of three parts that are Fuze, Projectile and Propellants. Among three parts, propelling charge of propellants part consists of single base propellants. It has been known that the lifespan of single base propellants is affected by a storage period. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally decomposed to unstable substances similar with other nitric acid ester. Even though it cannot be prevented fundamentally from being disassembled, a decomposition product ($NO_2$, $NO_3$, and $HNO_3$) and tranquillizer DPA (Diphenylamine) having high reactivity are added into a propellant to restrain induction of automatic catalysis by a decomposition product. The decay rate of the tranquillizer is also affected by a production rate of the decomposition product of NC. Therefore, an accurate prediction of the Self-Life is required to ensure against risks such as explosion. Hereupon, this paper presents a new methodology to estimate the shelf-life of single base propellants using data of ASRP (Ammunition Stockpile Reliability Program) to domestic 105mm HE (propelling charge of propellants part). We selected four attributes that are inferred to have influence on distribution of the DPA amount in a propellant from the ASRP dataset through data mining processes. Then the selected attributes were used as independent variables in a regression analysis in order to estimate the shelf-life of single base propellants.

A Research on the Manufacturing Process Improvement of High-Precision Parts for Precision Guided Missile (유도무기용 소형 정밀부품 제조공법 개선에 관한 연구)

  • Kim, Kyu-Young;Seo, Jung-Hwa;Kim, Kyoung-Rok;Kim, Bo-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • The manufacturing processes of high-precision parts for PGM (Precision Guided Missiles) have not been improved for decades; they still depend on machining or high-precision casting. These processes have an advantage when making small amounts of high-reliability parts in the usual case of a PGM system. In the case of a PGM system, however, which has been made for striking an extensive area, requires hundreds of bomblet units that require mass productivity. In addition, in the case of a part that is very difficult to machine, mass productivity and quality cannot be satisfied at the same time. In particular, cost reduction is an essential precondition to strengthening the export competitiveness of Korean defense articles. This study examined whether the MIM process is appropriate for manufacturing high-precision parts that require mass productivity. The optimized MIM process condition was determined after carrying out fundamental research. Comparisons of the quality of prototype parts with original parts and a functional test of a fuse that had been made with MIM parts highlighted the application possibility of the MIM process.