• Title/Summary/Keyword: Future air temperature

Search Result 249, Processing Time 0.029 seconds

Analysis of Phytoncide Concentration and Micrometeorology Factors by Pinus Koraiensis Stand Density (잣나무 임분밀도에 따른 피톤치드 농도 및 임내환경 특성에 관한 연구)

  • Jo, Yeseul;Park, Sujin;Jeong, Miae;Lee, Jeonghee;Yoo, Rheehwa;Kim, Cheolmin;Lee, Sangtae
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.205-216
    • /
    • 2018
  • Objectives: Scientific verification for health effects has been constantly demanded through the forest healing factors. In this study, phytoncide concentration which is one of the forest healing factors, was investigated according to stand density, season and visiting time, and analyzed correlation with micrometeorology factors. Methods: Total volatile organic compounds (TVOCs) and Natural volatile organic compounds (NVOCs) were collected using a measuring instrument which is connected to an air pump with the Tenax TA tube. The 32NVOCs were selected through the detailed criteria of adequacy assessment for recreational forest. The statistical analysis (correlation and stepwise regression analysis) was conducted between phytoncide concentration and micrometeorology factors. Results: NVOCs concentration linearly increased according to stand density. The high level showed in the summer (p<0.05), and there is no significant difference according to visiting hours of the Healing forest. NVOCs is a negative correlation with solar radiation, PAR and wind direction, and a positive correlation with relative humidity and temperature (p<0.01). NVOCs increased following the increase of humidity and temperature ($R^2=0.55$). Conclusions: Phytoncide linearly increased according to stand density, and showed the correlation significantly with microclimate factors. In future, these results will be utilized as a basic material to promote the generation of phytoncide, which positively influences human health promotion and manage the forest welfare space.

An experimental study on the low temperature melting treatment of waste asbestos for using (폐석면의 활용을 위한 저온 용융처리에 대한 실험적 연구)

  • Song, Tae Hyeob;Kim, Young Hun;Park, Ji Sun;Lee, Sea Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • As a reinforced fabric, asbestos has been utilized as a fire-resistant material as it has a superior flexural stiffness and heat resistance up to $1500^{\circ}C$. However, due to its harmfulness, its use has been prohibited recently and the even the installed asbestos materials are being repaired or supplemented if there is a concern about flying. Asbestos is mainly used for construction panels as a reinforced fabric and coating materials to ensure the fire-resistance of steel frames. Asbestos was used as fire-resistant materials for steel frames until 1991 and then prohibited as Act on Industrial Safety and Health limits the concentration of asbestos in the air. Classified as a designated waste according to Act on Waste Control, asbestos must be buried if there is no possibility of flying (panel-type materials) or cement-solidified and then buried if there is a possibility of flying (spray coating material) In general, it is required that a new waste landfill include a certain landfill facility for designated waste, but in reality there is an absolute storage of landfill facilities for designated waste as they only install facilities of the size required by the regulations. This could result in the 2nd environmental pollution as they cannot process asbestos wastes which will be generated in large volume in the future. This study explores a method that melts asbestos wastes at $700^{\circ}C$ rather than cement-solidifying the waste asbestos from construction sites, especially asbestos-containing spray coating. The study results showed that there was no change in the composition and shape even though asbestos wastes was melted at $1300^{\circ}C$, but there was a change for the specimen which was process in advance for low temperature melting and then melt at $900^{\circ}C$.

  • PDF

Development of control and monitoring board for building energy saving valve (빌딩 에너지 절감 밸브용 제어 및 감시 보드 개발)

  • Oh, Jin-Seok;Kang, Young-Min;Jang, Jae-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.895-902
    • /
    • 2018
  • Energy consumption in buildings is close to 40% of the total national energy consumption in developed countries such as US and Japan, and Korea accounts for 24% of total energy consumption. In buildings, HVAC can't freely control the cooling flow rate according to the required calorie, so energy is not used efficiently. Therefore, by using the energy saving valve, the flow rate can be controlled by the required amount of heat and the energy can be saved. In this paper, we define basic conditions and develop control and monitoring boards for building energy saving valves based on PIC processor with low power and high cost-effectiveness. The designed board displays and transmits in real time information about two temperature values, flow values and calculated calories for temperature difference measurement. The developed board will be useful for real - time monitoring of the state of the valve in the future and development of the valve for the offshore.

Emerging Research Advancements to Overcome the Peach Spring Frost

  • Pandiyan Muthuramalingam;Rajendran Jeyasri;Yeonju Park;Seongho Lee;Jae Hoon Jeong;Yunji Shin;Jinwook Kim;Sangmin Jung;Hyunsuk Shin
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.220-233
    • /
    • 2023
  • The phenomena of global warming has led to an increase in the average air temperature in temperate climates. Springtime frost damage is becoming more common, and after a period of dormancy, damage to buds, blooms, and developing fruits is greater significant than damage from low winter temperatures. Peaches are a crucial crop among moderate fruits. Spring frost damage in peaches can have a negative effect on crop growth, yield, and quality. It is noteworthy that these plants have evolved defenses against spring frost damage while being exposed to a variety of low temperatures in the early spring. In this current review, recent research advancements on spring frost damage avoidance in peaches were deliberated. Additionally, adaptive mechanisms of peach, such as deacclimation and reacclimation, were emphasized. Moreover, the emerging advancements using various omics approaches revealed the peach physiology and molecular mechanisms comprehensively. Furthermore, the use of chemical products and understanding the spring frost mechanisms through the use of environmental chamber temperature stimulation and infrared thermography studies were also discussed. This review is essential groundwork and paves the way to derive and design future research for agronomists and horticulturalists to overcome the challenges of spring frost damage avoidance and crop management in these circumstances.

Shifts of Geographic Distribution of Pinus koraiensis Based on Climate Change Scenarios and GARP Model (GARP 모형과 기후변화 시나리오에 따른 잣나무의 지리적 분포 변화)

  • Chun, Jung Hwa;Lee, Chang Bae;Yoo, So Min
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.348-357
    • /
    • 2015
  • The main purpose of this study is to understand the potential geographic distribution of P. koraiensis, which is known to be one of major economic tree species, based on the RCP (Representative Concentration Pathway) 8.5 scenarios and current geographic distribution from National Forest Inventory(NFI) data using ecological niche modeling. P. koraiensis abundance data extracted from NFI were utilized to estimate current geographic distribution. Also, GARP (Genetic Algorithm for Rule-set Production) model, one of the ecological niche models, was applied to estimate potential geographic distribution and to project future changes. Environmental explanatory variables showing Area Under Curve (AUC) value bigger than 0.6 were selected and constructed into the final model by running the model for each of the 27 variables. The results of the model validation which was performed based on confusion matrix statistics, showed quite high suitability. Currently P. koraiensis is distributed widely from 300m to 1,200m in altitude and from south to north as a result of national greening project in 1970s although major populations are found in elevated and northern area. The results of this study were successful in showing the current distribution of P. koraiensis and projecting their future changes. Future model for P. koraiensis suggest large areas predicted under current climate conditions may be contracted by 2090s showing dramatic habitat loss. Considering the increasing status of atmospheric $CO_2$ and air temperature in Korea, P. koraiensis seems to experience the significant decrease of potential distribution range in the future. The final model in this study may be used to identify climate change impacts on distribution of P. koraiensis in Korea, and a deeper understanding of its correlation may be helpful when planning afforestation strategies.

Application of Low Pressure Fogging System for Commercial Tomato Greenhouse Cooling (상업용 토마토온실 냉방을 위한 저압분무식 포그시스템의 적용)

  • Lee, Hyun-Woo;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The objective of the present study is to identify the applicability of a low pressure fogging system for cooling commercial tomato greenhouse. In particular, the cooling system in this experiment utilizes low pressure spray nozzles which were developed in Korea recently. The experimental result that the temperature in fog-cooled greenhouse was lower than the non-cooled greenhouse showed the cooling effect by the low pressure fogging system. But because the relative humidity in fog-cooled greenhouse was comparatively low, the satisfactory cooling effect could be acquired by narrowing the space of fog nozzles and extending fogging time to supply more fog spray quantity. The variation of temperature distribution in fog-cooled greenhouse along timelag was insignificant during short time, but that was great during long period of day. This result showed the variation of temperature along timelag was slight by fog cooling but great by other factors like radiation, ventilation, air flow, etc. The advanced operation technology of fog system was required to reduce the variation of temperature along time lag. We plan to suggest the advanced installation and operation technology of low pressure fogging system for cooling commercial tomato greenhouse by further experiments in near future.

Analysis and Investigation of International(UIC, EN, IEC) and Domestic Standards(Test Methods) for Climatic Wind Tunnel Test of Rolling Stock (철도차량 기후환경시험을 위한 국제 규격(UIC, EN, IEC) 및 국내 규격(시험방법) 분석 및 고찰)

  • Jang, Yong-Jun;Chung, Jong-Duk;Lee, Jae-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.782-789
    • /
    • 2020
  • The demand for the development of rolling stock technology to maintain the best performance in various climatic environments has increased to expand the overseas market of rolling stock. In this study, international and domestic standards that must be applied to build a harsh climatic environment test system were investigated and compared. The way of improvement for domestic standards is proposed. The wind velocities and temperatures are specified in the UIC, EN, and IEC standards for climatic wind tunnel, and EN 50125-1 provides the velocity test up to 180km/h, the largest wind speed. UIC and EN provide the lowest temperature of -45℃, and IEC 62498-1 provides the highest temperature 55℃. The solar radiation test was specified up to 1200W/m2 in the UIC, EN, and IEC. The IEC, EN, and KS R 9145 provide the water tightness standards, which are different from each other in water capacity, pressure, and methods. The snow test method was not well specified. KRTS-VE-Part 31 provides pressurization test methods. The airtightness standards for high-speed rolling stock are defined and regulated for internal pressure change rate in UIC 660 and 779-11. The domestic standard for the wind tunnel test was not well prepared, and the solar radiation test and snow test do not exist in Korea. Therefore, it is necessary to improve domestic standards to an international level for the climatic wind tunnel test of rolling stock.

Meteorological Impact on Daily Concentration of Pollens in Korea (일별 꽃가루농도에 대한 기상영향)

  • Lee, Hye-Rim;Kim, Kyu-Rang;Choi, Young-Jean;Oh, Jae-Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.99-107
    • /
    • 2012
  • There has been increasing number of patients with asthma, rhinitis, and conjunctivitis due to the atmospheric pollution and global warming. In this study, we investigated daily observed number of pollens to establish a standardized method for the impact analysis of the climate changes on the number of daily pollens in Korea. Daily observed allergenic pollens of trees, weeds, and pine were analyzed during the period of 1998 to 2010 (except 2006) in Seoul, Busan, Daegu, Gwangju, Gangneung, and Jeju. They increased in large cities including Seoul during the last 12 years and the long-term trend may continue in the future. Daily concentration or amount of pollens was highly correlated with weather variables. Positive correlation was found between air temperature and the pollens although different relationships existed for different locations. Chill days were utilized to estimate the length of the flowering or pollen period. The pollen period of trees was shorter in the field when the winter temperature was low. This approach may be utilized to determine the quantitative change in length of the pollen season in the future.

Derivation of Constraint Factors Affecting Passenger's In-Vehicle Activity of Urban Air Mobility's Personal Air Vehicle and Design Criteria According to the Level of Human Impact (도심항공모빌리티 비행체 PAV 탑승자 실내행위에 영향을 미치는 제약 요소 도출 및 인체 영향 수준에 따른 설계 기준)

  • Jin, Seok-Jun;Oh, Young-Hoon;Ju, Da Young
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.3-20
    • /
    • 2022
  • Recently, prior to the commercialization of urban air mobility (UAM), the importance of R&D for air transportation-related industries in urban areas has significantly increased. To create a UAM environment, research is being conducted on personal air vehicles (PAVs). They are key means of air transportation, but research on the physical factors influencing their passengers is relatively insufficient. In particular, because the PAV is expected to be used as a living space for the passengers, research on the effects of the physical elements generated in the PAV on the human body is essential to design an interior space that supports the in-vehicle activities of the passengers. Therefore, the purpose of this study is to derive the constraint factors that affect the human body due to the air navigation characteristics of the PAV and to understand the impact of these constraint factors on the bodies of the passengers performing in-vehicle activities. The results of this study indicate that when the PAV was operated at less than 4,000 ft, which is the operating standard, the constraint factors were noise, vibration, and motion sickness caused by low-frequency motion. These constraint factors affect in-vehicle activity; thus, the in-vehicle activities that can be performed in a PAV were derived using autonomous cars, airplanes, and PAV concept cases. Furthermore, considering the impact of the constraint factors and their levels on the human body, recommended constraint factor criteria to support in-vehicle activities were established. To reduce the level of impact of the constraint factors on the human body and to support in-vehicle activity, the seat's shape and built-in functions of the seat (vibration reduction function, temperature control, LED lighting, etc.) and external noise reduction using a directional speaker for each individual seat were recommended. Moreover, it was suggested that interior materials for noise and vibration reduction should be used in the design of the interior space. The contributions of this study are the determination of the constraint factors affecting the in-vehicle PAV activity and the confirmation of the level of impact of the factors on the human body; in the future, these findings can be used as basic data for suitable PAV interior design.

Seed Germination and Seedling Survival Rate of Pinus densiflora and Abies holophylla in Open-field Experimental Warming Using the Infrared Lamp (적외선등을 이용한 실외 실험적 온난화 처리에 따른 소나무와 전나무의 종자 발아 및 유묘 생존율)

  • Cho, Min Seok;Hwang, Jaehong;Yang, A-Ram;Han, Saerom;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.203-210
    • /
    • 2014
  • The purpose of this study was to investigate the effect of experimental warming using infrared lamps on seed germination and seedling survival rate of Pinus densiflora and Abies holophylla. The air temperature of warmed plots had been automatically maintained 3 higher than control plots. The percent germinations (%) of the two coniferous species were higher in warmed plots than in control plots, however a significant difference appeared only in A. holophylla. In addition, P. densiflora and A. holophylla showed the shorter mean germination time (days), higher germination rate ($seed{\cdot}day^{-1}$) and germination energy (%) in warmed plots than in control plots. A. holophylla showed a higher seedling mortality rate in the warmed plots than in control plots because of increased air and soil temperatures and decreased soil moisture. However, seedling survival rate of P. densiflora showed no significant difference by experimental warming. In the future, changed air and soil temperatures and soil moisture due to global warming will induce a variety of changes in seed germination and survival rate of tree species in nursery culture. Therefore, it is necessary to establish adaptation strategies that improve techniques in nursery culture against global warming.