• Title/Summary/Keyword: Fusion welding

Search Result 262, Processing Time 0.031 seconds

Effect of notch location on the toughness of narrow gap weldment (노치위치에 따른 Narrow Gap 용접부의 인성변화)

  • 김희진;신민태;원정규
    • Journal of Welding and Joining
    • /
    • v.4 no.1
    • /
    • pp.40-46
    • /
    • 1986
  • This investigation studied the toughness variations in the narrow gap weldment with the notch location. Specimens with the notch at the center of the weld metal showed the lowest toughness. As the location of notchmoves to fusion line, the impact properties improve reaching a maximum at the fusion boundaries. This improvement in toughness can be explained by the microstructural feature showing in the narrow gap weldment. "one pass/layer" technique performed in narrow gap welding results in the increased proportion of refined structure as approaching to fusion boundary from weld center and thus leave 100% refined structure along the fusion boundary. HAZ also shows 100% refined structure with respect to base metal structure accompanied with the significant suppression of ductile-brittle transition temperature.mperature.

  • PDF

Field Inspection of Phase-Array Ultrasonic for PolyEthylene Electrofusion Joints

  • Kil, Seong-Hee;Jo, Young-Do;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.22-25
    • /
    • 2012
  • Welding and/or fusion in polyethylene(PE) system made on site is focused on the control of the welding or fusion process to follow proper procedure. The process control is important, but it is not sufficient for the long term reliability of a pipe system. To achieve the rate of failure close to zero, Non Destructive Testing(NDT) is necessary in addition to joining process control. For electrofusion joints several non-destructive testing methods are available. The ultrasonic phased array technique is possible to detect various defects including wire deviations and regions with lack of fusion. In this studies, testing was carried to detect the defect after electrofusion joining of polyethylene piping is utilized by the ultrasonic phased array technique. From testing data, ultrasonic phased array technique is recommended as a reliable non-destructive testing method.

A Study on the Welding Technology for the Fabrication of Korean Fusion Reactor(KSTAR)

  • Kim, Dae-Soon;Park, Chang-Ho
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.418-424
    • /
    • 2002
  • Korean Fusion Reactor(KSTAR) system consists of a vacuum vessel, in-vessel components, cryostat, thermal shield, super-conducting magnets and magnet supporting structures. These systems are in the final stage of engineering design with the involvement of industrial manufacturers. The overall configuration and the detailed dimensions of the KSTAR structure have been determined and the first stage of manufacturing is progressing now. In this study, the fabrication and assembly sequence were evaluated in viewpoint of high strengthening joints and very high accuracy. Especially for this purpose, the special cleaning process and welding process were proposed for high strengthening austenitic stainless steel which shall be used at cryogenic temperature. The draft procedure qualification data for welding process are presented with precise welding data including special narrow groove design. For the cooling line attachment on the surface of inside wall of magnet structure case, Induction brazing technology is introduced with some special jigging system and some consumables.

  • PDF

A Study on the Three-Dimensional Heat Flow Analysis in the Laser Welding for Deep Penetration (레이저 심 용입 용저에서 3차원 열유동 해석에 관한 연구)

  • 이규태;김재웅
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • In this study, three-dimensional heat flow in laser beam welding for deep penetration was analyzed by using F.E.M common code, and then the results were compared with the experimental data. The models for analysis are full penetration welds and are made at three different laser powers (6, 9.9, 4.5 kW) with two different welding speeds (5.8mm/s, 5mm/s). The characteristics of thermal absorption by the workpiece during deep penetration laser welding can be represented by a combination of line heat source through the workpiece and distributed heat source at the top surface due to the plasma plume above the top surface. This gives an insight into the way in which the beam interacts with the material being welded. The analyses performed with the combined heat source models show comparatively good agreement between the experimental and calculated melt temperature isotherm, i.e, the fusion zone boundary. The results are used to explain the "nail head" appearance of fusion zone, which is quite common in laser beam welds.eam welds.

  • PDF

Comparison of Welding Characteristics of Austenitic 304 Stainless Steel and SM45C Using a Continuous Wave Nd:YAG Laser (오스테나이트계 스테인리스강과 SM45C의 연속파형 Nd:YAG 레이저 용접특성비교)

  • 유영태;오용석;노경보;임기건
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless and SM45C using a continuous wave Nd:YAG laser n experimentally investigated Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much Inter than those involved in conventional welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar and plates, etc. The Nd:YAG laser welding process is one of the most advanced manufacturing technologies owing to its high speed and penetration. This paper describes the weld ability of SM45C carbon steel for machine structural use by Nd:YAG laser. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

Effect of welding condition on microstructures of weld metal and mechanical properties in Plasma-MIG hybrid welding for Al 5083 alloy (알루미늄 5083 합금의 플라즈마 미그 하이브리드 용접시 용접부 미세조직과 기계적 성질 변화에 미치는 용접조건의 영향)

  • Park, Sang-Hyeon;Lee, Hee-Keun;Kim, Jin-Young;Chung, Ha-Taek;Park, Young-Whan;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • The effect of welding condition on microstructure and mechanical property of Plasma-MIG Hybrid Weld between Al 5083 plates(thickness : 10mm) was investigated. 1 pass weld without any defects such as puckering, undercut, and lack of fusion was obtained by 150~200A of plasma current and 5~7mm of welding speed. Gas porosities and shrinkage porosities were existed in the weld near fusion line. As welding speed and plasma current were decreasing, the area fraction of porosity was increasing. The hardness of the weld is increasing as welding speed. On the basis of microstructural analysis, Mg segregated region near dendrite boundaries tends to increase with the welding speed. In the result of hardness test, Distribution of hardness in fusion zone showed little change with the plasma current. However, when the welding speed increased, hardness in weld metal markdly increased. It could be considered that effect of heat input to growth of the dendritic solidification structures. Based on tensile test, tensile properties of weld metal was predominated by area fraction of porosities. Consequently, tensile properties can be controlled by formation site and area fraction of porosity.

Butt Welding Characteristics of Austenitic 304 Stainless Steel Using a Continuous Wave Nd:YAG Laser Beam (오스테나이트계 304 스테인리스강의 Nd:YAG 레이저 맞대기 용접특성)

  • Yoo, Young-Tae;Oh, Yong-Seok;Shin, Ho-Jun;Im, Kie-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.165-173
    • /
    • 2004
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

Comparative study on the performance of butt fusion-welding processes for nuclear safety class large-diameter thick-walled PE pipes

  • Zhenchao Wang;Bin Wang;Aimin Xiang;Di Jiao;Fa Yu;Qiuju Zhang;Xiaoying Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4184-4194
    • /
    • 2024
  • New technologies in polymer synthesis and pipe extrusion equipment have led to the commercialization of high-performance, large-diameter, thick-wall high density polyethylene (HDPE) pipes. They have been used in the field of seawater transport and cooling to replace metal pipes, due to their advantages of high corrosion resistance and extensibility. Connection of HDPE pipe is important as it determines the safety of the entire piping system. Butt fusion welding is commonly used for HDPE pipe connection but may cause the formation of weak points in the welded joints, interfering the reliability of the pipeline system in the application of nuclear power plants. At present, there is a lack of research on evaluating the performance of welded joint for large-diameter thick-wall HDPE pipes made by butt fusion-welding. The purpose of this study is to investigate the influence of three different butt fusion-welding processes, i.e., single low pressure (SLP), single high pressure (SHP) and dual low pressure (DLP), by evaluating the performance of their welded joints, including characterizing tensile strength, extensibility, crystallinity and hardness. In specific, a thick-wall HDPE pipe with OD of 812.8 mm and wall thickness of 74 mm which is certified for nuclear safety class was used for study. Representative specimen from the outer, middle and inner part across the wall of the main pipe body and welded joints were taken for testing. Different test methods and specimens were designed to assess the feasibility of evaluating the welding performance from different welding process. The results showed that the mechanical properties of different locations of the welded joints were different, and the tensile strength and fracture energy of the middle part of the joint were lower than that of the inner and outer parts, which could be caused by the difference in the crystallinity and thickness of the melting zone influenced by welding processes, as can be seen from the analysis of DSC test and morphology observation. Hardness testing was conducted on the section of the welded joints, and it revealed that the micromechanical properties of the welded joints in the region of the heat-affected zone were enhanced significantly, which may be due to the annealing effect caused by welding process. In summary, The DLP process resulted in the best extensibility of the welded joints among three processes, suggesting that the joining pressure from welding process plays an important role in affecting the extensibility of the welded joints.

A Study on the Impact Toughness and Microstructure change for Low carbon TMCP Structural Steel Alloy with Welding Heat Impact (용접 입열량에 따른 저탄소형 TMCP 구조용 강재의 용접부 충격인성 및 미세조직 변화에 관한 연구)

  • Gwon Sun Du;Lee Gwang Hak;Park Dong Hwan
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.101-102
    • /
    • 2004
  • This study was investigated on the impact toughness and microstructure of welded metal and heat affected zone for B grade steel. With welding procedures, welding heat inputs applied were 30, 79 and 264 kJ/cm, Prior austenite grain size in coarse zone has increased with increasing welding heat input for B grade steel. The toughness of fusion line zone of Bgrade steel has decreased with increasing welding heat input while the toughness fusion line +3 and +5 mm zone increased contrarily.

  • PDF

A Study on the Formation of Cavity and Welding Property in the Laser Welding Fusion Zone between Sintered Segment and Mild Steel Shank (소결체와 저탄소강의 레이저용접시 생성되는 캐비티의 형성과 용접 특성에 대한 연구)

  • Cho Nam-Joon;Jung Woo-Gwang;Kim Sung-Wook;Lee Chang-Hee;Kim Sung-Dea
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.300-306
    • /
    • 2004
  • A laser welding has been made between sintered tip of Fe-Co-W and low carbon steel shank for the diamond saw blade. The welding characteristics and formation of defect has been investigated carefully for the weld fusion zone in different welding condition. Full penetration has been observed for the whole range of heat input investigated in the present work. Bead width and under-fill have been increased with the increase of heat input. With increasing of heat input small cavities were decreased while large cavities were increased. The ratio of total cavity area to the entire weld bead area was not changed significantly with change of heat input. Most of cavities were found near the tip, and supposed to be formed from the pore in the tip.