• Title/Summary/Keyword: Fusion temperature

Search Result 651, Processing Time 0.022 seconds

Study of the Characteristics of Hydrogen-Gas Filling Process of Ultra-Light Composite Tanks for Fuel-Cell Vehicles (연료전지자동차용 초경량 복합재료 탱크의 수소 충전 특성 연구)

  • Yoo, Gye-Hyoung;Kim, Jong-Lyul;Lee, Taek-Su;Lee, Joong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.813-819
    • /
    • 2011
  • In this research, we investigated the hydrogen-gas filling characteristics of ultra-light composite tanks that have a plastic or aluminum liner inside the composite shell. The study was performed for different gas and tank temperatures. The temperature changes at various positions in the Type-4 tank during hydrogen-gas filling were monitored in order to understand the effects of the filling conditions. The results were compared with those obtained for a Type-3 tank. As the filling speed was increased, a quicker temperature rise was observed, and the temperature distribution over the entire region showed significant discrepancies.

The Effects of Silica-Alumina Type Inorganic Compounds on the Pyrolysis Reaction of EVA to Produce Fuel-Oil (EVA 수지 이용 연료유 생성을 위한 열분해 반응에서 실리카-알루미나 계열 무기물의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Oh, Se-Hui
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.706-713
    • /
    • 2011
  • The effects of silica-alumina type catalysts addition on the thermal decomposition of ethylene vinyl acetate (EVA) resin have been studied in a thermal analyzer (TGA, DSC) and a small batch reactor. The silica-alumina type compounds tested were kaolinite, bentonite, perlite, activated clay and clay. As the results of TGA experiments, pyrolysis starting temperature for EVA resin had the 1st pyrolysis temperature range of 300~$400^{\circ}C$ and the 2nd pyrolysis temperature range of 425~$525^{\circ}C$. The silica-alumina type catalysts did not affect the pyrolysis rate in EVA pyrolysis reaction. In the DSC experiments, addition of kaolinite and bentonite catalysts reduced the heat of fusion and heat of 2nd pyrolysis reaction. In the batch system experiments, the mixing of silica-alumina type catalysts enhanced the yield of fuel oil, and affected to the distribution of carbon numbers. In the silica-alumina type inorganic material used in this experiments, bentonite was the most effective from the pyrolysis heat, yields, and the characteristics of fuel oil.

Comparison of EU-DEMO React & Wind Nb3Sn TF CICC current sharing temperature against Wind & React Nb3Sn CICCs

  • Kwon, Soun P.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.7-18
    • /
    • 2022
  • European efforts to design superconducting conductors for a future tokamak have involved Nb3Sn cable-in-conduit conductor (CICC). Nb3Sn coils which undergo heat treatment to activate the Nb3Sn material are mostly produced through the wind-then-react route. However, some Nb3Sn coils have been proposed with CICCs of the react-then-wind route. The latter CICCs are physically constrained due to handling limitations which if not adhered to will result in irrecoverable damage to the Nb3Sn cable inside, nullifying any performance advantage. A group at the Swiss Plasma Center has proposed such CICC designs, constructing samples and testing them for performance. The characteristics and performance of these react & wind (R&W) CICCs are compared with the more common wind & react (W&R) CICCs, and it is found that the R&W designs show more extreme characteristics than typical W&R Nb3Sn CICCs for some parameters that are known to influence CICC performance. Where the R&W CICCs extend the range of those parameters, they also continue trends formed by the W&R CICCs with the parameters. The main observation, however, is that although the current sharing temperature performances of the R&W samples are above the average of the W&R samples they were compared to, they are not the highest. A similar observation applies to a cost comparison of the superconducting material where the R&W CICCs are found to be relatively cheap but not the cheapest. Given these results, clear practical advantages to the R&W CICC design is not evident.

Wet etching of α-Ga2O3 epitaxy film using a HCl-based solution (HCl 용액을 이용한 α-Ga2O3 epitaxy 박막의 습식 식각)

  • Choi, Byoung Su;Um, Ji Hun;Eom, Hae Ji;Jeon, Dae-Woo;Hwang, Sungu;Kim, Jin Kon;Yun, Young Hoon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.40-44
    • /
    • 2022
  • Wet etching of α-Ga2O3 epitaxy film was performed using a 35 % hydrochloric (HCl) acid solution. As the temperature of the 35 % HCl solution increased, the α-Ga2O3 etch rate increased, and the etch rate of 119.6 nm/min was obtained at 75℃, the highest temperature examined in this work. The activation energy for etch reaction was determined to be 0.776 eV, and this suggests that the wet etching of α-Ga2O3 in the 35 % HCl solution was dominated by the reaction-limited mechanism. AFM analysis showed that the surface roughness of the etched surface increased as the temperature of the etchant solution increased.

Evaluation of cryogenic mechanical properties of aluminum alloy using small punch test

  • Hojun Cha;Seungmin Jeon;Donghyeon Yoon;Jisung Yoo;Seunggun Lee;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.70-74
    • /
    • 2023
  • The Small Punch Test (SPT) was developed to evaluate the softening and embrittlement of materials such as power plants and nuclear fusion reactors by taking samples in the field. Specimens used in the SPT are very thin and small disk-shaped compared to specimens for general tensile test, and thus have economic advantages in terms of miniaturization and repeatability of the test. The cryogenic SPT can also be miniaturized and has a significantly lower heat capacity than conventional universal test machines. This leads to reduced cooling and warm-up times. In this study, the cryogenic SPT was developed by modifying the existing room temperature SPT to be cooled by liquid nitrogen using a super bellows and a thermal insulation structure. Since the cryogenic SPT was first developed, basic experiments were conducted to verify the effectiveness of it. For the validation, aluminum alloy 6061- T6 specimens were tested for mechanical properties at room and cryogenic temperature. The results of the corrected tensile properties from the SPT experiment results were compared with known room temperature and cryogenic properties. Based on the correction results, the effectiveness of the cryogenic SPT test was confirmed, and the surface fracture characteristics of the material were analyzed using a 3d image scanner. In the future, we plan to conduct property evaluation according to the development of various alloy materials.

Modeling of Welding Heat Input for Residual Stress Analysis (용접 잔류응력 해석을 위한 Heat Input Model 개발)

  • 심용래;이성근
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.34-47
    • /
    • 1993
  • Finite element models were developed for thermal and residual stress analysis for the specific welding problems. They were used to evaluate the effectiveness of the various welding heat input models, such as ramp heat input function and lumped pass models. Through the parametric studies, thermal-mechanical modeling sensitivity to the ramp function and lumping techniques was determined by comparing the predicted results with experimental data. The kinetics for residual stress formation during welding can be developed by iteration of various proposed mechanisms in the parametric study. A ramp heat input function was developed to gradually apply the heat flux with variable amplitude to the model. This model was used to avoid numerical convergence problems due to an instantaneous increase in temperature near the fusion zone. Additionally, it enables the model to include the effect of a moving arc in a two-dimensional plane. The ramp function takes into account the variation in the out of plane energy flow in a 2-D model as the arc approaches, travels across, and departs from each plane under investigation. A lumped pass model was developed to reduce the computation cost in the analysis of multipass welds. Several weld passes were assumed as one lumped pass in this model. Recommendations were provided about ramp lumping techniques and the optimum number of weld passes that can be combined into a single thermal input.

  • PDF

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.

Ornamented Dagger Sheath from Gyerim-ro Tomb No.14, Gyeongju: On the Joining Process of Gold Granules (경주 계림로 14호분 장식보검 금립의 접합방법에 관한 고찰)

  • Yu, Heisun
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.4-13
    • /
    • 2015
  • In most gold objects crafted using the granulation technique that have been thus far discovered in the Korean Peninsula, granules were joined using a soldering alloy of gold and silver. However, it was recently revealed through SEM-EDS analysis performed on the ornamented dagger sheath from Gyerim-ro Tomb No.14 in Gyeongju that the gold granules were joined to the surface of this sheath using an entirely different technique. The gold granules on the Gyerim-ro dagger sheath are evenly sized and shaped, the surface has a dendritic texture. Dendritic textures are a characteristic feature of metal alloys, not observed in pure metals. As a matter of fact, the gold granules were made of a ternary alloy of 77wt% Au, 18wt% Ag and 4wt% Cu. Due to this component, the alloy has a melting point below 1000℃ (approximately 980℃), which is significantly lower than 1064℃, the melting temperature of pure gold. This makes it possible to join the gold granules directly to the surface of the sheath by briefly heating them to high temperature, without the use of soldering or any other media. When examined through SEM image, the surface of the sheath showed no traces of soldering, it suggests that the granules were joined through unaided fusion.

Bactericidal Effect of Pathogenic Bacteria on Acid Treatment Combined with Red, Green, and Blue LED Light at a Low Temperature Environment (저온에서 산 처리와 적색, 녹색, 청색 LED 조사의 조합에 따른 식중독 세균의 살균 효과)

  • Do, Jung Sun;Chung, Hyun-Jung;Bang, Woo-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1725-1732
    • /
    • 2015
  • The bactericidal effects of 642, 521, and 461 nm LED were investigated on Escherichia coli O157:H7 and Staphylococcus aureus strains in TSB with pH 7.2, 4.0, and 3.5 for 10 h at $15^{\circ}C$. The bactericidal effect of 461 nm blue LED was the most pronounced compared to 642 nm and 521 nm LEDs at pH 3.5. When E. coli was exposed to pH 3.5 with 461 nm LED, populations of E. coli O157:H7 ATCC 43894 and 35150 decreased by 4 and 5 log CFU/mL for 2 h, respectively. Populations of E. coli ATCC 8739 decreased by 5 log CFU/mL for 2 h. Further, S. aureus ATCC 27664, 43300, and 19095 were inactivated by 4, 5 and 5 log CFU/mL for 2 h, respectively, at pH 3.5 with 461 nm LED. In conclusion, combined treatment with 461 nm LED and acidic conditions at low-temperature ($15^{\circ}C$) showed the greatest antimicrobial effects. This study suggests that LEDs may be potentially used as a method to maintain the safety of the food preservation technology.

Effects of Draw Ratio and Additive CaCO3 Content on Properties of High-Performance PE Monofilament (연신비와 첨가제 CaCO3가 PE 모노필라멘트의 물성에 미치는 영향)

  • Park, Eun-Jeong;Kim, Il-Jin;Lee, Dong-Jin;Kim, Jung-Soo;Lee, Young-Hee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.290-296
    • /
    • 2021
  • The effect of draw ratio (8, 10, 12, 14 times) and additive CaCO3 content (0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) on the properties of high-performance PE monofilament was investigated in this study. As the draw ratio increased (8-14 times), the melting enthalpy (ΔHf), crystallinity, specific gravity, and tensile strength increased significantly. However, the draw ratio had little effect on the melting temperature (Tm) and crystallization temperature (Tc). The seawater fastness (stain and fade) of the hydrophobic PE monofilament prepared in this study showed an excellent grade of 4-5 in all draw ratios. To investigate the effect of the additive CaCO3 content on the properties of high-performance PE monofilament, the draw ratio was fixed at 14 times. It was found that the tensile strength of the PE monofilament sample containing 0.5 wt% of CaCO3 was much greater compared to the sample without CaCO3, but the elongation of the sample containing 0.5 wt% of CaCO3 was much less than the sample with 0 wt% CaCO3. However, in the case of the sample containing more than 0.5 wt% CaCO3, the tensile strength slightly decreased and the elongation slightly increased as the CaCO3 content increased. The seawater fastness (stain and fade) of the hydrophobic PE monofilament showed excellent grades of 4-5, regardless of the amount of additives. From the above results, it was found that the maximum draw ratio of 14 times with an additive of 0.5 wt% CaCO3 are the optimal conditions for manufacturing high-performance marine fusion materials with various fineness (denier) with high strength and low elongation.