• Title/Summary/Keyword: Fusion resistance

Search Result 252, Processing Time 0.07 seconds

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels (고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Choi, Chul Young;Lee, Dongyun;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

Microfluidic LOC System (Microfluidic LOC 시스템)

  • Kim, Hyun-Ki;Gu, Hong-Mo;Lee, Yang-Du;Lee, Sang-Yeol;Yoon, Young-Soo;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.906-911
    • /
    • 2004
  • In this paper, we used only PR as etching mask, while it used usually Cr/AU as etching mask, and in order to fabricate a photosensor has the increased sensitivity, we investigated on the sensitivity of general type and p-i-n type diode. we designed microchannel size width max 10um, min 5um depth max 10um, reservoir size max 100um, min 2mm. Fabrication of microfluidic devices in glass substrate by glass wet etching methods and glass to glass fusion bonding. The p-i-n diode has higher sensitivity than photodiode. Considering these results, we fabricated p-i-n diodes on the high resistive($4k{\Omega}{\cdot}cm$) wafer into rectangle and finger pattern and compared internal resistance of each pattern. The internal resistance of p-i-n diode can be decreased by the application of finger pattern has parallel resistance structure from $571\Omega$ to $393\Omega$.

  • PDF

Studies on the Genetic Recombination by Intraspecific Fusion of Lactobacillus casei Protoplast (Lactobacillus casei의 동종간 세포융합에 의한 유전자 재조합에 관한 연구)

  • Young Jin Baek;Hyeong Suk Bae;Young Kee Kim;Min Yoo;Hyun Uk Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.4
    • /
    • pp.319-324
    • /
    • 1986
  • After intraspecific fusion of Lactobacillus casei protoplasts, the recombinants have been studied for their lactose utilization, protease activity and phage resistance. L. casei C-M phenotypes constituted 46% of the fused cells when tested against phages, and L. casei 3-M phenotypes 42% of the fused cells, and 12% of the recombinants developed the resistance to both parent types of phages. The acid production and proteolytic activity of recombinants evidenced the similar trends. There was no difference in Hind III digests of plasmid DNA between parent cells and recombinants, but the reconlbinant cells were found to possess only one type of plasmid, either of 1. casei C-M or of L. casei 3-M.

  • PDF

Effect of specimen size on fracture toughness of reduced activation ferritic steel (JLF-l) (저방사화 철강재 (JLF-1)의 파괴인성에 미치는 시험편 크기의 영향)

  • Kim, Dong-Hyun;Yoon, Han-Ki;Park, Won-Jo;Katoh, Y.;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.300-305
    • /
    • 2003
  • Reduced activation ferritic (JLF-1) steel is leading candidates for blanket/first-wall structures of the D-T fusion reactor. In fusion application, structural materials will suffer effects of repeated changes of temperature. Therefore, the data base of tensile strength and fracture toughness at operated temperature $400^{\circ}C$ are very important. Fracture toughness ($J_{IC}$) and tensile tests were carried out at room temperature and elevated temperature ($400^{\circ}C$). Fracture toughness tests were performed with two type size to investigate the relationship between the constraint effect of a size and the fracture toughness resistance curve. As the results, the tensile strength and the fracture toughness values of the JLF-1 steel are slightly decreased with increasing temperature. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. The fracture toughness values of JLF-1 steel at room temperature and at $400^{\circ}C$ shows an excellent fracture toughness ($J_{IC}$) of about $530kJ/m^2\;and\;340kJ/m^2$, respectively.

  • PDF

Effect of surface quality on hydrogen/helium irradiation behavior in tungsten

  • Chen, Hongyu;Xu, Qiu;Wang, Jiahuan;Li, Peng;Yuan, Julong;Lyu, Binghai;Wang, Jinhu;Tokunaga, Kazutoshi;Yao, Gang;Luo, Laima;Wu, Yucheng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1947-1953
    • /
    • 2022
  • As the plasma facing material in the nuclear fusion reactor, tungsten has to bear the irradiation impact of high energy particles. The surface quality of tungsten may affect its irradiation resistance, and even affect the service life of fusion reactor. In this paper, tungsten samples with different surface quality were polished by mechanical processing, subsequently conducted by D2+ implantation and thermal desorption. D2+ implantation was performed at room temperature (RT) with the irradiation dose of 1 × 1021 D2+/m2 by 5 keV D2+ ions, and thermal desorption spectroscopy measurements were done from RT to 900 K. In addition, He irradiation was also performed by 50 eV He+ ions energy with the fluxes of 5.5 × 1021 m-2s-1 and 1.5 × 1022 m-2s-1, respectively. Results reveal that the hydrogen/helium irradiation behavior are both related to surface quality. Samples with high surface quality has superior D2+ retention behavior with less D2 retained after implantation. However, such samples are more likely to generate fuzzes on the surface after helium irradiation. Different morphologies (smooth, wavy, pyramids) after helium irradiation also demonstrates that the surface morphology is related to tungsten crystallographic orientation.

Fretting Corrosion Behavior of Tin-plated Electric Connectors with Variation in Temperature (온도변화에 따른 주석 도금한 전기 커넥터의 미동마멸 부식 거동)

  • Oh, Man-Jin;Kang, Se-Hyung;Lee, Man-Suk;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.146-155
    • /
    • 2014
  • In this study, we conduct fretting corrosion tests on tin-plated brass coupons to investigate the effect of temperature on fretting corrosion for various span amplitudes. We prepare a coupled fretting corrosion specimens using a tin-plated brass coupon with a thickness of $10{\mu}m$. One specimen is a flat coupon and the other specimen is a coupon with a protuberance in 1 mm radius, which is produced using 2 mm diameter steel ball. We conduct fretting corrosion tests at $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$ by rubbing the coupled coupons together at the contact between the flat and protuberance coupons. We measure electric resistance of the contact during the fretting corrosion test period. There is increase in resistance with fretting cycles. It is found that rate of increase in electric resistance becomes faster with increase in testing temperature. Magnitude of friction coefficient increases with fretting span amplitudes. And, change in friction coefficient becomes desensitized to the increment in span amplitude. Assuming that failure cycle is the cycle with an electric resistance of $0.01{\Omega}$, we find that failure lifetime ($N_f$) decreases with increase in testing temperature. Furthermore, based on the assumption that the damage rate of the connector is inversely related to the failure cycle, we calculate the activation energy for fretting damage to be 13.6 kJ/mole by using the Arrhenius equation. We propose a method to predict failure cycle at different temperatures for span amplitudes below $30{\mu}m$. Friction coefficients generally increase with increase in span amplitude and decrease in testing temperature.

Electric Resistance Double Spot Welding Process of Dissimilar Metal Plates of Steel and Aluminum by Using Heating Dies (가열금형을 사용하는 강철과 알루미늄 이종금속판재의 전기저항 이중스폿용접)

  • Kim, T.H.;Sun, Xiaoguang;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • In this paper, a double spot welding process, utilizing electric resistance heating dies, is suggested for the spot welding of dissimilar metal plates for drawing and concurrent spot welding. This double welding process has two heating methods for the fusion welding at the interfacial zone between steel and aluminum plates, such as heating method by thermal conduction of electric resistance by welding current induced to heating dies, and heating method by electric resistance between contacted surfaces of two plates by welding current induced to copper electrode. This double welding process has welding variables such as each current induced in heating dies and in copper electrode, outer diameters of heating dies, and edge shape of copper electrode. Experiments for current conditions in welding process should be demanded in order to get successful welding strength. It was known that the welding strength could be reached to the value demanded on industry fields under such welding conditions as heating dies of outer ring dia.12mm contacted on steel plate, as heating dies of outer ring dia. 14mm contacted on aluminum plate, and as copper electrode of dia. 6.0mm, and as 3 times continuous heating method by $1^{st}$ current of 11 kA(9cycle), $2^{nd}$ current 11 kA(60cycle), $3^{rd}$ current 7 kA(60cycle) applied in steel heating dies and copper electrodes, flat edge of copper electrode, for double spot welding process of dissimilar metal plates of steel and aluminum of 1.0 mm thickness.

Effect of Venturi System on Acceleration of Low-speed Water Flow at the Venturi Throat Installed at the Inlet of Hydro Turbine

  • Jung, Sang-Hoon;Seo, In-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.914-920
    • /
    • 2011
  • For a hydro turbine electricity generation system in river or bay, a venturi system could be applied to accelerate flow speed at the inlet of the turbine system in a flow field. In this study, a steady flow simulation was conducted to understand the effect of venturi system on the acceleration of current speed at the inlet of a hydro turbine system. According to the continuity equation, the flow speed is inversely proportional to the cross-section area in a conduit flow; however, it would be different in an open region because the venturi system would be an obstruction in the flow region. As the throat area is 1/5 of the inlet area of the venturi, the flow velocity is accelerated up to 2.1 times of the inlet velocity. It is understood that the venturi system placed in an open flow region gives resistance to the upcoming flow and disperses the flow energy around the venturi system. The result of the study should be very important information for an optimum design of a hydro turbine electricity generation system.

MECHANICAL AND ELECTRICAL PROPERTIES OF STYRENE-BUTADIENE-STYRENE/ ALUMINIUM COMPOSITES

  • Renukappa, N.M.;Siddaramaiah, Siddaramaiah;Sudhaker Samuel, R.D.;Jeevananda, T.;Kim, Nam-Hoon;Lee, Joong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.142-147
    • /
    • 2007
  • A series of styrene-butadiene-styrene/aluminium (SBR/Al) composites have been compounded with different weight ratios of Al. The prepared SBR-Al systems have been characterized for different mechanical properties such as tensile strength, tensile modulus and surface hardness have improved with the increase in content of Al in SBR matrix. This may is because of the increase in polymer-filler interaction. The electrical properties such as volume conductivity, surface resistivity, dielectric constant, dissipation factor (tan delta), and break down voltage of SBR/Al composites have been measured with reference to volume fraction $(V_{f}),$ frequency and temperature. The resistance of the SBR-Al composites is found to be ohmic. The voltage-current (V-I) characteristics for SBR-Al also exhibit a linear relationship indicating the ohmic behavior.

  • PDF

Experimental Study on Aseismic Performance Existing School Buildings due to the Steel Reinforcement (강재 보강에 따른 기존 학교건축물의 내진성능에 관한 실험적 연구)

  • Lee, Ho;Park, Sung-Moo;Kwon, Young-Wook;Byeon, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.45-55
    • /
    • 2013
  • The core aim of this paper is to empirically scrutinize a strength characteristic and ductility of the beam-column frame of reinforced with steel subjected to the cyclic lateral load. First and foremost, I the author embarks upon making four prototypes vis-$\grave{a}$-vis this research. Through this endeavour, the author has analysed cyclic behavior, fracture shape, ductility and energy dissipation of the normal beam-column frame and a beam-column frame of reinforced with steel. In addition, the survey has revealed the exact stress transfer path and the destructive mechanism in order to how much a beam-column frame of reinforced with steel has resistance to earthquake regarding all types of building, as well as school construction. To get the correct data, the author has compared the normal beam-column frame and three types of the beam-column frame of reinforced with steel following these works, the characteristic of cyclic behavior, destructive mechanism, ductility, and Energy dissipation of normal beam-column frame and a beam-column frame of reinforced with steel have been examined clearly.