• Title/Summary/Keyword: Fusion Vegetation Index

Search Result 21, Processing Time 0.029 seconds

Development of a Fusion Vegetation Index Using Full-PolSAR and Multispectral Data

  • Kim, Yong-Hyun;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.547-555
    • /
    • 2015
  • The vegetation index is a crucial parameter in many biophysical studies of vegetation, and is also a valuable content in ecological processes researching. The OVIs (Optical Vegetation Index) that of using multispectral and hyperspectral data have been widely investigated in the literature, while the RVI (Radar Vegetation Index) that of considering volume scattering measurement has been paid relatively little attention. Also, there was only some efforts have been put to fuse the OVI with the RVI as an integrated vegetation index. To address this issue, this paper presents a novel FVI (Fusion Vegetation Index) that uses multispectral and full-PolSAR (Polarimetric Synthetic Aperture Radar) data. By fusing a NDVI (Normalized Difference Vegetation Index) of RapidEye and an RVI of C-band Radarsat-2, we demonstrated that the proposed FVI has higher separability in different vegetation types than only with OVI and RVI. Also, the experimental results show that the proposed index not only has information on the vegetation greenness of the NDVI, but also has information on the canopy structure of the RVI. Based on this preliminary result, since the vegetation monitoring is more detailed, it could be possible in various application fields; this synergistic FVI will be further developed in the future.

Comparison of Spatio-temporal Fusion Models of Multiple Satellite Images for Vegetation Monitoring (식생 모니터링을 위한 다중 위성영상의 시공간 융합 모델 비교)

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1209-1219
    • /
    • 2019
  • For consistent vegetation monitoring, it is necessary to generate time-series vegetation index datasets at fine temporal and spatial scales by fusing the complementary characteristics between temporal and spatial scales of multiple satellite data. In this study, we quantitatively and qualitatively analyzed the prediction accuracy of time-series change information extracted from spatio-temporal fusion models of multiple satellite data for vegetation monitoring. As for the spatio-temporal fusion models, we applied two models that have been widely employed to vegetation monitoring, including a Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and an Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM). To quantitatively evaluate the prediction accuracy, we first generated simulated data sets from MODIS data with fine temporal scales and then used them as inputs for the spatio-temporal fusion models. We observed from the comparative experiment that ESTARFM showed better prediction performance than STARFM, but the prediction performance for the two models became degraded as the difference between the prediction date and the simultaneous acquisition date of the input data increased. This result indicates that multiple data acquired close to the prediction date should be used to improve the prediction accuracy. When considering the limited availability of optical images, it is necessary to develop an advanced spatio-temporal model that can reflect the suggestions of this study for vegetation monitoring.

Improving Accuracy of Land Cover Classification in River Basins using Landsat-8 OLI Image, Vegetation Index, and Water Index (Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선)

  • PARK, Ju-Sung;LEE, Won-Hee;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.98-106
    • /
    • 2016
  • Remote sensing is an efficient technology for observing and monitoring the land surfaces inaccessible to humans. This research proposes a methodology for improving the accuracy of the land cover classification using the Landsat-8 operational land imager(OLI) image. The proposed methodology consists of the following steps. First, the normalized difference vegetation index(NDVI) and normalized difference water index(NDWI) images are generated from the given Landsat-8 OLI image. Then, a new image is generated by adding both NDVI and NDWI images to the original Landsat-8 OLI image using the layer-stacking method. Finally, the maximum likelihood classification(MLC), and support vector machine(SVM) methods are separately applied to the original Landsat-8 OLI image and new image to identify the five classes namely water, forest, cropland, bare soil, and artificial structure. The comparison of the results shows that the utilization of the layer-stacking method improves the accuracy of the land cover classification by 8% for the MLC method and by 1.6% for the SVM method. This research proposes a methodology for improving the accuracy of the land cover classification by using the layer-stacking method.

Improvement of Vegetation Index Image Simulations by Applying Accumulated Temperature

  • Park, Jin Sue;Park, Wan Yong;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • To analyze temporal and spatial changes in vegetation, it is necessary to determine the associated continuous distribution and conduct growth observations using time series data. For this purpose, the normalized difference vegetation index, which is calculated from optical images, is employed. However, acquiring images under cloud cover and rainfall conditions is challenging; therefore, time series data may often be unavailable. To address this issue, La et al. (2015) developed a multilinear simulation method to generate missing images on the target date using the obtained images. This method was applied to a small simulation area, and it employed a simple analysis of variables with lower constraints on the simulation conditions (where the environmental characteristics at the moment of image capture are considered as the variables). In contrast, the present study employs variables that reflect the growth characteristics of vegetation in a greater simulation area, and the results are compared with those of the existing simulation method. By applying the accumulated temperature, the average coefficient of determination (R2) and RMSE (Root Mean-Squared Error) increased and decreased by 0.0850 and 0.0249, respectively. Moreover, when data were unavailable for the same season, R2 and RMSE increased and decreased by 0.2421 and 0.1289, respectively.

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Application of Satellite Data Spatiotemporal Fusion in Predicting Seasonal NDVI (위성영상 시공간 융합기법의 계절별 NDVI 예측에서의 응용)

  • Jin, Yihua;Zhu, Jingrong;Sung, Sunyong;Lee, Dong Kun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Fine temporal and spatial resolution of image data are necessary to monitor the phenology of vegetation. However, there is no single sensor provides fine temporal and spatial resolution. For solve this limitation, researches on spatiotemporal data fusion methods are being conducted. Among them, FSDAF (Flexible spatiotemporal data fusion) can fuse each band in high accuracy.In thisstudy, we applied MODIS NDVI and Landsat NDVI to enhance time resolution of NDVI based on FSDAF algorithm. Then we proposed the possibility of utilization in vegetation phenology monitoring. As a result of FSDAF method, the predicted NDVI from January to December well reflect the seasonal characteristics of broadleaf forest, evergreen forest and farmland. The RMSE values between predicted NDVI and actual NDVI (Landsat NDVI) of August and October were 0.049 and 0.085, and the correlation coefficients were 0.765 and 0.642 respectively. Spatiotemporal data fusion method is a pixel-based fusion technique that can be applied to variousspatial resolution images, and expected to be applied to various vegetation-related studies.

AUTOMATIC BUILDING EXTRACTION BASED ON MULTI-SOURCE DATA FUSION

  • Lu, Yi Hui;Trinder, John
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.248-250
    • /
    • 2003
  • An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.

  • PDF

Urban Object Classification Using Object Subclass Classification Fusion and Normalized Difference Vegetation Index (객체 서브 클래스 분류 융합과 정규식생지수를 이용한 도심지역 객체 분류)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.223-232
    • /
    • 2023
  • A widely used method for monitoring land cover using high-resolution satellite images is to classify the images based on the colors of the objects of interest. In urban areas, not only major objects such as buildings and roads but also vegetation such as trees frequently appear in high-resolution satellite images. However, the colors of vegetation objects often resemble those of other objects such as buildings, roads, and shadows, making it difficult to accurately classify objects based solely on color information. In this study, we propose a method that can accurately classify not only objects with various colors such as buildings but also vegetation objects. The proposed method uses the normalized difference vegetation index (NDVI) image, which is useful for detecting vegetation objects, along with the RGB image and classifies objects into subclasses. The subclass classification results are fused, and the final classification result is generated by combining them with the image segmentation results. In experiments using Compact Advanced Satellite 500-1 imagery, the proposed method, which applies the NDVI and subclass classification together, showed an overall accuracy of 87.42%, while the overall accuracy of the subchannel classification technique without using the NDVI and the subclass classification technique alone were 73.18% and 81.79%, respectively.

Analyzing Difference of Urban Forest Edge Vegetation Condition by Land Cover Types Using Spatio-temporal Data Fusion Method (시공간 위성영상 융합기법을 활용한 도시 산림 임연부 인접 토지피복 유형별 식생 활력도 차이 분석)

  • Sung, Woong Gi;Lee, Dong Kun;Jin, Yihua
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.279-290
    • /
    • 2018
  • The importance of monitoring and assessing the status of urban forests in the aspect of urban forest management is emerging as urban forest edges increase due to urbanization and human impacts. The purpose of this study was to investigate the status of vegetation condition of urban forest edge that is affected by different land cover types using $NDVI_{max}$ images derived from FSDAF (Flexible Spatio-temporal DAta Fusion). Among 4 land cover types,roads had the greatest effect on the forest edge, especially up to 30m, and it was found to affect up to 90m in Seoul urban forest. It was also found that $NDVI_{max}$ increased with distance away from the forest edge. The results of this study are expected to be useful for assessing the effects of land cover types and land cover change on forest edges in terms of urban forest monitoring and urban forest management.