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Abstract

To analyze temporal and spatial changes in vegetation, it is necessary to determine the associated continuous 
distribution and conduct growth observations using time series data. For this purpose, the normalized difference 
vegetation index, which is calculated from optical images, is employed. However, acquiring images under cloud 
cover and rainfall conditions is challenging; therefore, time series data may often be unavailable. To address 
this issue, La et al. (2015) developed a multilinear simulation method to generate missing images on the target 
date using the obtained images. This method was applied to a small simulation area, and it employed a simple 
analysis of variables with lower constraints on the simulation conditions (where the environmental characteristics 
at the moment of image capture are considered as the variables). In contrast, the present study employs variables 
that reflect the growth characteristics of vegetation in a greater simulation area, and the results are compared 
with those of the existing simulation method. By applying the accumulated temperature, the average coefficient 
of determination (R2) and RMSE (Root Mean-Squared Error) increased and decreased by 0.0850 and 0.0249, 
respectively. Moreover, when data were unavailable for the same season, R2 and RMSE increased and decreased 
by 0.2421 and 0.1289, respectively. 
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1. Introduction

 
Vegetation converts solar energy into chemical energy 

and it is the most important component of an ecosystem 
(Arnon et al., 1956). Changes in vegetation interact directly 
and indirectly with energy cycles, climate change, and 
human activities (Corenblit and Steiger, 2009). Therefore, 
vegetation distribution and growth analysis are essential for 
predicting changes in the environmental characteristics of 
the atmosphere, hydrology, and soil. (Boussetta et al., 2013). 

Analyzing the temporal and spatial changes in vegetation 
requires the continuous observation of these changes using 

time series data (Lanorte et al., 2014). Vegetation indices 
are used to monitor the distribution, growth, and vitality of 
vegetation; among the various vegetation indices, the NDVI 
(Normalized Difference Vegetation Index) is commonly 
employed (Jensen, 2009). The NDVI is calculated via optical 
imaging through remote sensing, and various satellite 
images are used to observe the widely distributed vegetation 
(Pettorelli et al., 2005). Among these, LANDSAT, a 
multispectral satellite, has been in operation for more than 40 
years and is suitable for constructing long-term time series 
NDVI data as it photographs in the infrared and visible bands 
(Robinson et al., 2017). However, in some cases, optical 
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images cannot be obtained owing to weather conditions, such 
as the presence of clouds and rainfall (Li and Yeh, 2004). 

To overcome this problem, a method that uses images 
from various sensors has been suggested; however, data 
discontinuity occurs owing to the differences in sensor 
characteristics, such as the spatial and spectral resolutions 
between images (Jensen, 2009). An alternative method can 
produce a simulated image using acquired images. For this, 
the weighted average method (Lee et al., 2017) and the spatial 
and temporal adaptive reflectance fusion model (STARFM; 
Gao et al., 2006) have been employed with LANDSAT 
images. The weighted average method averages two images, 
one taken before and one after the target date, based on the 
date interval. The STARFM (Spatial and Temporal Adaptive 
Reflectance Fusion Model) fuses the characteristics of 
LANDSAT spatial resolution and MODIS (MOderate 
Resolution Imaging Spectroradiometer) temporal resolution, 
and result can be obtained even if only one LANDSAT image 
is captured 30 days before or after the target date. However, 
the conditions of the image vary depending on the season and 
region, and the images must be obtained from both the fusion 
sensors (Lee et al., 2017). The above two methods have 
limitations in that they cannot be employed if contiguous 
images are missing. The rainy season occurs in the Korean 
Peninsula during summer, and rain falls for an average of 
103.5 days (data.kma.go.kr). Therefore, as LANDSAT has a 
16-day revisit cycle, continuous data losses occur. 

To address the limitations caused by the lack of simulation 
images obtained (when images at adjacent times are missing 
due to a continuous lack of data), a simulation method using 
multiple time images was proposed by La et al., (2015). This 
method utilizes accumulated LANDSAT data over a long 
period, and analyzes the relationship between an image and 
the variables of the period, and then it simulates an image 
for the target period. By using this method, an image for a 
desired target date can be simulated based on the acquired 
data, regardless of the acquisition cycle of the image. In the 
present study, we selected variables for use in the simulation 
that are related to the growth characteristics of vegetation 
and applied them to a wide area simulation to improve the 
simulation method proposed by La et al., (2015). 

By producing a wide range of simulated images over a long 

period of omissions, it is expected that data from the Korean 
Peninsula can be used to construct a time series of vegetation 
index data for the Korean Peninsula, where rainfall is 
frequent during summer months and forests account for 63% 
of the land. Additionally, this method is expected to enable 
the determination of long-term forest distribution, as well 
as the analysis of growth and change forecasts. It is also 
expected to provide a measurement of the recovery criterion, 
and the simulated data can be employed to suggest directions 
that need to be taken with respect to forest loss due to 
disasters (such as forest fires on the east coast in 2000 and in 
Gangneung in 2019). Furthermore, it is expected to facilitate 
the identification of forest conditions in North Korea, in areas 
where access is limited, and to provide basic data for national 
development within the Korean Peninsula.

2. Methodology

2.1 La’s method

La’s method is a linear regression model that analyzes the 
relationship between long-term accumulated LANDSAT 
images and variables recorded on each image acquisition day 
(Eq. (1)) via the following:
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where Y is the pixel value of a LANDSAT image, t is the 
target date, 
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          are the temperature, 
humidity, precipitation, visibility, reference NDVI, direct  
radiation, diffuse radiation, and reflected radiation occurring 
on the target date (Fig. 1 and Table 1). 

The variables used are obtained from open data sources 
that are easily accessible, and temperature, humidity, 
precipitation, and visibility are obtained from the Korea 
Meteorological Administration. 

The regression equation is calculated for each image pixel 
and a simulation is conducted. The variable applied to each 
pixel uses the same value without interpolation. 
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Fig. 1. Simulation process 

Table 1. Variables used in La's method 

Group Variables

Weather variables Temperature, Humidity, 
Precipitation, Visibility

Solar Radiation Direct Radiation, Diffuse 
Radiation, Reflected Radiation

Vegetation Index reference NDVI

The values of temperature, humidity, and visibility are 
those occurring at the time when the LANDSAT image would 
have been acquired, and precipitation is the daily average of 
that recorded from five days before image acquisition. The 
three solar radiation values employed are direct radiation, 
diffuse radiation, and reflected radiation, and the calculation 
method employs a DEM (Digital Elevation Model) in La's 
study (Kumar et al., 1997; Gates, 2012; La et al., 2015). In 
La's experiment, the ASTER GDEM (Advanced Spaceborne 
Thermal Emission and Reflection Radiometer Global DEM) 
was used; however, in this experiment, the SRTM (Shuttle 
Radar Topography Mission) DEM, which is known to have 
a higher vertical accuracy than ASTER GDEM, is employed 
(Hirt et al., 2010; Frey and Paul, 2012). 

The reference NDVI value used in La's experiment was 
calculated from the LANDSAT image adjacent to the target 
date to be simulated. 

La's image simulation method is easy to use, and its 
conditions are not demanding; therefore it has been compared 
with several other simulation methods (Lee et al., 2017; Kim 
et al., 2019). However, the process of selecting and processing 
the variables in La’s method has not be improved, and no 

further research has been conducted.

2.2 Improvement direction

In La's experiment, to simulate the LANDSAT image, the 
reference NDVI calculated from other LANDSAT images 
of the adjacent period of the simulation target was used as 
a variable; however, the conditions (such as the range of 
the adjacent time) were not specified. Furthermore, NDVI 
cannot be calculated from LANDSAT images in adjacent 
periods when consecutive images are missing. Moreover, the 
problem about missing consecutive images is the limitation 
of the weighted average method (Lee et al., 2017) and 
STARFM method (Gao et al., 2006), The purpose of La's 
method is to address this limitation. It is a contradiction 
that La's method employed to solve the problem of lack of 
continuous images does not take into account the problem of 
obtaining a continuous image.

In this experiment, the MODIS NDVI image was resampled 
to 30m and used as an alternative reference NDVI variable. 
MODIS NDVI uses the vegetation index image MOD13Q1 
provided by the Land Processes Distributed Active Archive 
Center (LP DAAC). MOD13Q1 has a spatial resolution of 
250m, which is lower than that of LANDSAT, but the image 
is produced by processing values of 16 days, including the 
simulation target date. Thus, it can be used to provide the 
approximate NDVI condition of the target date.

The temperature, humidity, and visibility variables were 
used at the moment the image was acquired. It is possible 
to reflect the environment at the moment the image was 
acquired; however, the main change in the time series 
data is the vegetation, which grows with gradual changes 
in the weather. Weather variables that reflect the growth 
characteristics of vegetation, are discussed in detail in 
Section 2.3.

The experimental area employed in La’s method was 24 × 
24 km (576 km2), which was less than 2% of the LANDSAT 
(185 × 185 km) image, and observations from two stations 
near the test area were used as variables. Although the 
simulation was proceeded for each pixel of the image, 
the variables used were applied without interpolation. In 
addition, the average values   obtained at the two stations were 
applied equally to all pixels. In this study, the simulation 
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area is enlarged, and values   from 18 stations are used. With 
an expansion of the simulation area, the values   of weather 
variables are applied to each pixel using spline interpolation. 
This process is further described in Section 2.4.

2.3 Weather variable selection

La's method simulates missing image when the optical 
image cannot be obtained due to poor visibility during cloud 
cover, rainfall, and at high humidity and temperatures. If 
variables during cloudy and rainy conditions are applied to 
the relational formula built on the variables of the day when 
the ground image can be obtained, the simulation results may 
be inaccurate. To compensate for this, we aimed to apply the 
change in meteorological environment between acquisition 
days, rather than the using values on the acquisition day.

The NDVI provides data related to the observations of 
the vitality and distribution of vegetation during growth. 
Therefore, modeling should not  employ the instantaneous 
environment at the time of imaging, but it should also 
consider gradual changes in the environment (Hänninen 
and Tanino, 2011). Vegetation grows and adapts to changes 
in climatic conditions such as temperature, humidity, and 
sunshine hours (Fenner, 1998). Among these variables, 
accumulated temperature, including temperature and time 
notion, is used to predict and observe vegetation growth 
stages (including flowering and foliation periods) (McMaster 
and Wilhelm, 1997). Depending on the species of vegetation 
and the purpose of the observations, different temperatures 
can be employed for various criteria (Kim et al., 2014). 
However, the minimum activation temperature of most 
vegetation is considered to be 0–5 °C, and only values above 
that temperature are accumulated (Monteith, 1981).

To establish a standard for calculating accumulated 
temperature and cumulative precipitation, we analyzed the 
relationship between weather variables and NDVI images 
under various conditions. 

To determine the relative importance of weather variables 
to the NDVI, the RF (Random Forest) (an ensemble learning 
method) (Breiman, 2001) was used to conduct a variable 
selection test. RF is type of machine learning that uses a 
combination of decision trees. Large data that are not sampled 
are divided into multiple training datasets through random 

sampling, and each dataset is trained through each decision 
tree. Combining multiple randomly generated decision trees 
can prevent overfitting and reduce the effects of noise. RF 
can be used to determine the importance of variables with 
respect to a regression problem (Breiman, 2001; Seo et al., 
2017). The relative importance of NDVI and 16 weather 
variables was confirmed.

The test conducted on the selection of weather variables 
used 23 NDVI images captured on different dates, and 
250,000 pixels of each image were analyzed. 

However, for image simulation of the North Korean 
region, only weather records taken every 3 h were used (they 
were acquired in the same manner as North Korean weather 
data(data.kma.go.kr)). 

The temperature at the time of acquisition used in La’s 
study, average temperature, and accumulated temperature 
were compared. The average and accumulated values 
were calculated every 3 h, and the accumulation reference 
temperature was set to 0 °C. The average temperature and 
accumulated temperature may be different due to the sub-
zero temperature, so they were compared. To determine the 
difference according to the accumulated or average number 
of days, values from 4, 8, 12, and 16 days before the image 
was acquired were employed. 

In addition to conducting this variable test, in the actual 
image simulation, there were no clouds and precipitation does 
not occur, on the day when images can be acquired. Therefore, 
precipitation was also compared to determine whether it 
should be employed as a weather variable. Precipitation has 
no negative value, and only average precipitation was used 
because the values of the mean and totalizer are the same 
(Table 2).  Humidity and visible distance employed in La's 
method were excluded because they were not considered 
to be weather variables that directly affect the growth 
characteristics of vegetation; therefore, they are not related 
to the aim of this study.

The relative importance was calculated by analyzing the 
relationships between 5 million NDVI pixels and 16 variables 
(Fig. 2).
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2.4 Simulation areas and data

The experimental area covers 14,400 km2 from Odaesan, 
Gangwon-do, to Jecheon, Chungcheongbuk-do (Fig. 3); this 
area is 25 times larger than that used in La’s study. Four areas 
covering 225 km2 were selected to determine the differences 
between the regional features: a mountainous area higher 
than 1,000 m (Area-1), a small city with a mountainous area 
(Area-2), an area with relatively lower mountains (Area-3), 
and the suburbs of a city (Area-4; Table 3). The distribution 
of NDVI was calculated from the original image taken on the 
target date to identify the regional features (Fig. 4). There 

Table 2. Test weather variables 

Type of Variables Variables

Temperature

Temperature at the time when the image was acquired (T-img)

Accumulated temperature and average temperature on the day of image acquisition 
(T-M1, T-A1)

Average temperature over 4, 8, 12 and 16 days
(T-M4, T-M8, T-M12, T-M16)

Accumulated temperature over 4, 8, 12 and 16 days
(T-M4, T-M8, T-M12, T-M16) (above 0 °C)

Precipitation
Precipitation on the day the image was acquisition (P-1)

Average precipitation over 2, 3, 4 or 5 days
(P-M2, P-M3, P-M4, P-M5)

Fig. 3. Experimental area and meteorological observatory 

Fig. 2. Importance score 
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are 18 weather stations inside and outside the experimental 
areas. The study of La et al. (2015) used weather information 
from two observation stations located near the experimental 
area as variables. This study used the average value of 18 
weather stations when reproducing La’s method.

New weather variable was converted to point shape files 
and applied using spline interpolation (Table 4).

The set of experiments employed five years of images from 
LANDSAT 5 and 8 obtained in odd years between 2009 and 

2017. To compare the seasonal simulations, spring, summer, 
and autumn data sets were used as simulation targets. 
However, no images were obtained in the adjacent time 
periods of the simulation targets, and vegetation changed 
rapidly during autumn targets. In addition, there is no image 
taken in September in other years, and, therefore, limited 
simulations were conducted (Table 5).

 

Table 3. Location and features of the sample area 

No. Location Features

Area-1 Nae-myeon, Hongcheon-gun, Gangwon-do Mountainous area higher than 1,000m

Area-2 Geumseong-myeon, Jecheon-si, Chungcheongbuk-do Small city with mountainous area

Area-3 Gimsatgat-myeon, Yeongwol-gun, Gangwon-do Area with relatively lower mountains

Area-4 Noeun-myeon, Chungju-si, Chungcheongbuk-do City suburbs

Table 4. Method used to apply station value  

Experimental group Application method Application contents

La’s method Average Apply the average as with La's method;
extend the range to entire simulation area

New weather variable Interpolation Convert 18 observations to point shape files using 
spline interpolation for comparison

Fig. 4. NDVI distribution features by target date in each area 
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3. Simulation and Results

3.1 Simulation image

 Simulations were conducted using MODIS NDVI and 
three solar radiation values as common variables to compare 
and analyze the results between the weather variables 
employed (Fig. 5–Experiment No.1). To reproduce La's 
method, the temperature, visibility, humidity, and five-day 
average precipitation obtained at 18 stations and the common 
variables were averaged and applied (Fig. 5-Experiment 
No. 2). A comparison was performed by applying the 
accumulated temperature (over 0 °C) over 16 days obtained 
from 18 stations (in addition to the common variables as 
weather variables; Fig. 5-Experiment No.3). 

The weather data used in all experiments were obtained 
from the weather data open portal (data.kma.go.kr), and 
SRTM DEM, MODIS NDVI, and LANDSAT data were 
downloaded from the Geological Survey of the United 
States (earthexplorer.usgs.gov). All grid data were unified 
with the same coordinate system, and they were scaled 
and sized through reprojection and rescaling. The NDVI 
was calculated from reflectance and atmospheric calibrated 
LANDSAT data. All variables were extracted for each pixel 
and subjected to multiple regression analysis (Fig. 6).

3.2 Simulation results

The simulations used three target dates and three variable 
combinations, and the regional characteristics and associated 

Table 5. Dates of data set acquisition(bold italic font represents the target date)

Image
Product Year

Date
Spring Summer Autumn Winter

LANDSAT-5
2009 04-07 

05-25 - - -

2011 03-12 
04-13 06-16 - 01-07

LANDSAT-8

2013 03-27 -
10-27
11-12 
11-28

-

2015

03-07
03-23
04-24
05-10
05-26

- 10-17 -

2017 04-13 04-29 06-16 09-20

01-23
02-24
12-09
12-25

Fig. 5. Experimental composition 
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results of the four areas were compared. In total, 36 results 
were generated, and the performance of each result was 
analyzed by calculating the coefficient of determination 
(R2) and root mean-squared error (RMSE). Each of   the 
target original image and simulated result image areas were 
clipped to compare the actual observation with the predicted 
value. R2 and RMSE were obtained through analysis 

between corresponding pixels. The comparisons results are 
summarized by date, area, and variable used, in Table 6.

In comparison with La's method, the results of the 
simulations using the 16-day accumulated temperature, 
which is the new weather variable included in this 
experiment, showed an average increase and decrease of 
0.0850 and 0.0249 in R2 and RMSE, respectively, for all 

Fig. 6. Data processing flowchart 

Table 6. Results by target date, regional characteristics, and variable used 

Sample 
Area

Method 
No.

March 27 June 16 September 20
R2 RMSE R2 RMSE R2 RMSE

Area-1
(1) 0.7806 0.0501 0.7501 0.0650 0.2607 0.2431
(2) 0.7109 0.0522 0.6564 0.1147 0.1987 0.2365
(3) 0.8233 0.0870 0.7576 0.1078 0.4408 0.1076

Area-2 
(1) 0.8325 0.0416 0.8296 0.0731 0.5696 0.1642
(2) 0.8335 0.0431 0.8091 0.1323 0.5552 0.1709
(3) 0.8800 0.0527 0.8489 0.0679 0.6426 0.1177

Area-3 
(1) 0.8386 0.0381 0.7589 0.0633 0.3325 0.1352
(2) 0.8328 0.0379 0.5793 0.0725 0.2599 0.1628
(3) 0.8663 0.0628 0.7538 0.0799 0.4795 0.0863

Area-4
(1) 0.7466 0.0480 0.8326 0.0736 0.5025 0.1625
(2) 0.8435 0.0414 0.8211 0.1190 0.4901 0.1652
(3) 0.7592 0.0592 0.8596 0.0709 0.4985 0.1499



Improvement of Vegetation Index Image Simulations by Applying Accumulated Temperature

105  

cases. There was a rapid change in vegetation on September 
20, and the simulation results are expected to be lower than 
those of the other two target dates. Nevertheless, when 
using the 16-day accumulated temperature, there was a 
significant improvement in the results. The best case for both 
comparisons occurred in Area-1 on September 20: the R2 

and RMSE increased and decreased by 0.2421 and 0.1289, 
respectively (Fig. 7), and, the average rates of increase 
and decrease for R2 and RMSE were 55.95% and 35.47%, 
respectively.

In comparison with the simulation results using common 
variables alone, La's method resulted in an average R2 

and RMSE decrease and increase of 0.0370 and 0.0159, 
respectively. This implies that adding weather variables 
to the common variables at the time of image acquisition, 
such as when employing La's method, has a negative effect 
on the simulation results. The difference was found te be 
particularly large on June 16, R2 and RMSE decreased and 
increased by 0.0763 and 0.0409, respectively.

               (a)                              (b)                             (c) 
Fig. 7. September 20 in Area-1

(a): Original Target NDVI 
(b):   Employing accumulated temperature   

(R2: 0.4408, RMSE: 0.1076)
(c): La’s method (R2: 0.1987, RMSE: 0.2365)  

The best simulation results for all cases and methods were 

obtained for Area-2 when the simulation was applied using 
the 16-day accumulated temperature and common variables 
for the target on March 27 (R2 0.8800, RMSE 0.0527; Fig. 8).

                       (a)                                               (b)
Fig. 8. March 27 in Area-2

(a): Original Target NDVI
(b):   Employing Accumulated Temperature 

(R2 0.8800, RMSE 0.0527) 

The results for Area-2 exhibited an R2 and RMSE that 
were 0.1100 higher and 0.0038 lower, respectively, than the 
mean of the other three regions. Additionally, the results for 
March 27 provided an R2 and RMSE that were on average 
0.2087 higher and 0.0714 lower, respectively, compared 
with the average for the other two target dates. Based on the 
results of the two comparisons, it was concluded that the best 
results were obtained on March 27 in Area-2. 

To determine the differences between the regional 
characteristics when using the simulation method with 
accumulated temperature, the three target dates were 
averaged to compare the simulation results by region (Table 
7). The results were relatively low for Area-1 and Area-
3, which are mountainous regions with a large vegetation 
distribution, whereas those for  Area-2 and Area-4 (which 
contain few trees and many artifacts) were relatively good. 
However, when calculating the rate of change when using 
accumulated temperature result, the R2 result for Area-4 

Table 7. Comparison of simulation result averages by region 

La's method Using Accumulated 
Temperature Rate of change  

R2 RMSE R2 RMSE R2 RMSE
Area-1 0.5220 0.1345 0.6739 0.1008 29.10% -25.04%
Area-2 0.7326 0.1154 0.7905 0.0794  7.90% -31.19%
Area-3 0.5573 0.0911 0.7000 0.0763 25.57% -16.18%
Area-4 0.7182 0.1085 0.7058 0.0933 -1.74% -14.00%
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was found to  decrease by approximately 1.7%, compared 
with La's method. This is due to the Area-4 result of March 
27. It is the only case in which R2 value is decreased of the 
entire case. Area-2 includes a small city where there is a low 
vegetation distribution; and the accumulated temperature in 
this area provide less effective results of improvement than 
Area-1 and Area-3. 

4. Conclusion

 
Simulations were conducted based on La's method using 

common variables (MODIS NDVI, direct, diffused, and 
reflected radiation values) and temperature, humidity, 
visibility, and five-day average precipitation at the time of 
image acquisition. The results were inferior to those acquired 
using only common variables. However, when the 16-day 
accumulated temperature was employed, which considered 
vegetation growth characteristics, the simulation results were 
significantly improved. 

The results for Area-1 (mountainous areas over 1,000 m) 
were the poorer than those of other areas, and the results 
for September 20 were the poorest of all the target dates. 
Forest distribution is difficult to simulate and it was difficult 
to conduct simulations because images were lacking  from 
adjacent periods. However, the most effective improvement 
in the simulation method using the 16-day accumulated 
temperature (compared with La's method) was observed 
in Area-1 for September 20, which is considered to be the 
season with the worst conditions. The use of the 16-day 
accumulated temperature, which is a variable that reflects 
vegetation growth characteristics, improved the performance 
results, and was also found to be more effective in forested 
areas, where trees were dense, and in extreme situations, 
where reference data were lacking. 

When simulations are conducted over large areas, a 
large number of station data related to the simulation area 
are required for use as variables. However, additional 
interpolation experiments are required, and it is necessary 
to conduct further experiments using the geographical 
characteristics of stations, such as differences in altitude 
and the surrounding topography. In this experiment, 16-
day accumulated temperature was used to confirm the 

availability of variables with growth characteristics. 
However, other variables such as ground temperature, 
ground humidity, and geology also directly affect vegetation. 
Common weather observation data for North and South 
Korea, including humidity, precipitation, and visibility, can 
be employed in addition to temperature. If the relationship 
between these data and vegetation growth is determined, it 
may be possible to select additional variables and conduct 
detailed simulations by employing a multi-faceted approach 
to vegetation growth characteristics.
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