• 제목/요약/키워드: Fusion Model

검색결과 953건 처리시간 0.024초

A Framework for Building Reconstruction Based on Data Fusion of Terrestrial Sensory Data

  • Lee, Impyeong;Choi, Yunsoo
    • Korean Journal of Geomatics
    • /
    • 제4권2호
    • /
    • pp.39-45
    • /
    • 2004
  • Building reconstruction attempts to generate geometric and radiometric models of existing buildings usually from sensory data, which have been traditionally aerial or satellite images, more recently airborne LIDAR data, or the combination of these data. Extensive studies on building reconstruction from these data have developed some competitive algorithms with reasonable performance and some degree of automation. Nevertheless, the level of details and completeness of the reconstructed building models often cannot reach the high standards that is now or will be required by various applications in future. Hence, the use of terrestrial sensory data that can provide higher resolution and more complete coverage has been intensively emphasized. We developed a fusion framework for building reconstruction from terrestrial sensory data, that is, points from a laser scanner, images from digital camera, and absolute coordinates from a total station. The proposed approach was then applied to reconstructing a building model from real data sets acquired from a large complex existing building. Based on the experimental results, we assured that the proposed approach cam achieve high resolution and accuracy in building reconstruction. The proposed approach can effectively contribute in developing an operational system producing large urban models for 3D GIS with reasonable resources.

  • PDF

RCC-MR 코드에 기반한 ITER 시험증식블랑켓 일차벽 설계 (First Wall Design of ITER Test Blanket Module(TBM) based on RCC-MR Code)

  • 신규인;이동원
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.14-19
    • /
    • 2012
  • The Helium cooled ceramic reflector(HCCR) test blanket module(TBM) has been designed and developed to participate the ITER(International Thermonuclear Experimental Reactor) test blanket program in Korea. The TBM was one of the main objectives for developing ITER for proving the tritium self-sufficiency and the heat transfers to produce the electricity with the breeding blanket concept. Among the TBM components, the first wall(FW) was the most important component in safety since it was directly faced a high level of a heat and fast neutrons from the plasma side and could protect the others components inside TBM. In this paper, the FW has been designed through the thermo-mechanical analysis considering ITER operation conditions. With the developed simple models, the stress limit analysis based on RCC-MR code which is the nuclear power plant design codes in France was evaluated for the allowable design criteria. The results showed that the designed FW model satisfied $1.5S_m$ or $3S_m$ of the allowable stress($S_m$) in RCC-MR code at the maximum stress region in the FW.

Multi-lag Out of Sequence Measurement 환경에서의 IMM-MPDA 필터 성능 분석 (The Performance Analysis of IMM-MPDA Filter in Multi-lag Out of Sequence Measurement Environment)

  • 서일환;송택렬
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1476-1483
    • /
    • 2007
  • In a multi-sensor target tracking systems, the local sensors have the role of tracking the target and transferring the measurements to the fusion center. The measurements from the same target can arrive out of sequence called, the out-of-sequence measurements(OOSMs). The OOSM can arise in a form of single-lag or multi-lag throughout the transfer at the fusion center. The recursive retrodiction step was proposed to update the current state estimates with the multi-lag OOSM from the several previous papers. The real world has the possible situations that the maneuvering target informations can arrive at the fusion center with the random clutter in the possible OOSMs. In this paper, we incorporate the IMM-MPDA(Interacting Multiple Model - Most Probable Data Association) into the multi-lag OOSM update. The performance of the IMM-MPDA filter with multi-lag OOSM update is analyzed for the various clutter densities, OOSM lag numbers, and target maneuvering indexes. Simulation results show that IMM-MPDA is sufficient to be used in out of sequence environment and it is necessary to correct the current state estimates with OOSM except a very old OOSM.

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.

Variation of the Relationship Between Arctic Oscillation and East Asian Winter Monsoon in CCSM3 Simulation

  • Wie, Jieun;Moon, Byung-Kwon;Lee, Hyomee
    • 한국지구과학회지
    • /
    • 제40권1호
    • /
    • pp.1-8
    • /
    • 2019
  • Although recent reports suggest that the negative correlation between the Arctic Oscillation (AO) and the East Asian winter monsoon (EAWM) has been strengthened, it is not clear whether this intermittent relationship is an intrinsic oscillation in the climate system. We investigate the oscillating behavior of the AO-EAWM relationship at decadal time scales using the long-term (500-yr) climate model simulation. The results show that ice cover over the East Siberian Seas is responsible for the change in the coupling strength between AO and EAWM. We found that increased ice cover over these seas strengthens the AO-EAWM linkage, subsequently enhancing cold advection over the East Asia due to anomalous northerly flow via a weakened jet stream. Thus, this strengthened relationship favors more frequent occurrences of cold surges in the EAWM region. Results also indicate that the oscillating relationship between AO and EAWM is a natural variability without anthropogenic drivers, which may help us understand the AO-EAWM linkage under climate change.

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.

Data fusion based improved HOSM observer for smart structure control

  • Arunshankar, J.
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.257-266
    • /
    • 2019
  • The benefit of data fusion in improving the performance of Higher Order Sliding Mode (HOSM) observer is brought out in this paper. This improvement in the performance of HOSM observer, resulted in the improvement of active vibration control of a piezo actuated structure, when controlled by a Discrete Sliding Mode Controller (DSMC). The structure is embedded with two piezo sensors for measuring the first two vibrating modes. The fused output of sensors is applied to the HOSM observer for generating state estimates, these states generated are applied to the DSMC, designed for the fourth order linear time invariant model of the structure. In the simulation study, the structure is excited at the first and second mode resonance. It is found that better vibration suppression is obtained, when the states generated by the fused output of sensors is applied as controller input, than the vibration suppression obtained by applying the states generated by using individual sensor output. The closed loop performance of DSMC obtained with HOSM observer is compared with the closed loop performance obtained with the conventional observer. Results obtained shows that better vibration suppression is obtained when the states generated by HOSM observer is applied as controller input.

Quasi real-time and continuous non-stationary strain estimation in bottom-fixed offshore structures by multimetric data fusion

  • Palanisamy, Rajendra P.;Jung, Byung-Jin;Sim, Sung-Han;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.61-69
    • /
    • 2019
  • Offshore structures are generally exposed to harsh environments such as strong tidal currents and wind loadings. Monitoring the structural soundness and integrity of offshore structures is crucial to prevent catastrophic collapses and to prolong their lifetime; however, it is intrinsically challenging because of the difficulties in accessing the critical structural members that are located under water for installing and repairing sensors and data acquisition systems. Virtual sensing technologies have the potential to alleviate such difficulties by estimating the unmeasured structural responses at the desired locations using other measured responses. Despite the usefulness of virtual sensing, its performance and applicability to the structural health monitoring of offshore structures have not been fully studied to date. This study investigates the use of virtual sensing of offshore structures. A Kalman filter based virtual sensing algorithm is developed to estimate responses at the location of interest. Further, this algorithm performs a multi-sensor data fusion to improve the estimation accuracy under non-stationary tidal loading. Numerical analysis and laboratory experiments are conducted to verify the performance of the virtual sensing strategy using a bottom-fixed offshore structural model. Numerical and experimental results show that the unmeasured responses can be reasonably recovered from the measured responses.

Image Captioning with Synergy-Gated Attention and Recurrent Fusion LSTM

  • Yang, You;Chen, Lizhi;Pan, Longyue;Hu, Juntao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권10호
    • /
    • pp.3390-3405
    • /
    • 2022
  • Long Short-Term Memory (LSTM) combined with attention mechanism is extensively used to generate semantic sentences of images in image captioning models. However, features of salient regions and spatial information are not utilized sufficiently in most related works. Meanwhile, the LSTM also suffers from the problem of underutilized information in a single time step. In the paper, two innovative approaches are proposed to solve these problems. First, the Synergy-Gated Attention (SGA) method is proposed, which can process the spatial features and the salient region features of given images simultaneously. SGA establishes a gated mechanism through the global features to guide the interaction of information between these two features. Then, the Recurrent Fusion LSTM (RF-LSTM) mechanism is proposed, which can predict the next hidden vectors in one time step and improve linguistic coherence by fusing future information. Experimental results on the benchmark dataset of MSCOCO show that compared with the state-of-the-art methods, the proposed method can improve the performance of image captioning model, and achieve competitive performance on multiple evaluation indicators.

Pd 분리막을 이용한 수소동위원소 회수 실험과 공정 시뮬레이션 (Hydrogen Isotopes Recovery Using Pd Membrane and Process Simulation)

  • 정우찬;박종환;한상우;장민호;이현곤
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.219-227
    • /
    • 2021
  • Hydrogen isotopes, which are used as raw materials in fusion reaction, participate in the reaction only in small amount, and most of them are released together with impurities. In order to recover and reuse only hydrogen isotopes from this exhaust gas, a recovery process is required, and most of the hydrogen isotopes can be recovered using a Pd Membrane. In this study, the recovery rate of hydrogen isotopes was measured through the first and second stage Pd membrane experiments. In the case of the experiment using a single stage Pd membrane, about 99.2%, and in the case of the first stage and second stage Pd membrane connection experiments, a recovery rate of 99.9% or more was obtained. Therefore, the recovery rate of Pd membrane process applied to hydrogen can be applied to hydrogen isotopes. In addition, the simulation model was established using aspen custom modeler, a commercial software, and the validity of the simulation was checked by applying the references and experimental data. The simulation results based on the experimental data showed a difference of 2% or less.