• Title/Summary/Keyword: Fused silica glass

Search Result 30, Processing Time 0.029 seconds

Improvement of Transmittance and Surface Integrity of Glass Mold for light-hardening polymer Using MR Polishing (HR polishing에 의한 광경화성수지 성형용 글래스 몰드의 투과율 및 표면품위 향상)

  • Lee, J.W.;Kim, D.W.;Cho, M.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.78-83
    • /
    • 2009
  • In general, Light-hardening polymer was used UV nanoimprint technology. A light-hardening polymer was had the problem of poor hardness, durability. In order to overcome the problem of polymer, inter change optical glass. However glass is very manufacture and a lowering of standars transmittance. In order to glass recover was necessary polishing process. The process is magnetorheological fluids polishing. MR polishing has been developed as a new precision finishing technique to obtain a fine surface. Hence, Magnetorheological fluids has been used for micro polishing to get micro parts. This polishing process guarantees high polishing quality by controlling the fluid density electrically. The applied material in experiments is fused silica glass. Fused silica glass is widely used in the optical field because of high degree of purity. For MR polishing experiments, MR fluid was composed with DI-water, carbonyl iron and nano slurry ceria. The wheel speed and electric current were chosen as the variables for analyzing the characteristics of MR polishing process. Outstanding surface roughness of Ra=1.58nm was obtained on the fused silica glass specimen. And originally glass transmittance was recover on the fused silica glass.

  • PDF

Investigation of Polishing Characteristics of Fused Silica Glass Using MR Fluid Jet Polishing (MR Fluid Jet Polishing 시스템에 의한 Fused Silica Glass 연마특성 고찰)

  • Lee, Jung-Won;Cho, Yong-Kyu;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.761-766
    • /
    • 2012
  • Abrasive fluid jet polishing processes have been used for the polishing of optical surfaces with complex shapes. However, unstable and unpredictable polishing spots can be generated due to the fundamental property of an abrasive fluid jet that it begins to lose its coherence as the jet exits a nozzle. To solve such problems, MR fluid jet polishing has been suggested using a mixture of abrasives and MR fluid whose flow properties can be readily changed according to imposed magnetic field intensity. The MR fluid jet can be stabilized by imposed magnetic fields, thus it can remain collimated and coherent before it impinges upon the workpiece surface. In this study, MR fluid jet polishing characteristics of fused silica glass were investigated according to injection time and magnetic field intensity variations. Material removal rates and 3D profiles of the generated polishing spots were investigated. From the results, it can be confirmed that the developed MR fluid polishing system can be applied for stable and predictable precise polishing of optical parts.

Evaluation of micro-channel characteristics of fused silica glass using powder blasting (Powder blasting을 이용한 Fused silica glass의 마이크로 채널 가공 및 특성 평가에 관한 연구)

  • Lee, Jung-Won;Kim, Tae-Min;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • Recently, due to the development of MEMS technology, researches for the production of effective micro structures and shapes have been actively conducted. However, the process technology based on chemical etching has a number of problems such as environmental pollution and time problems due to multi-process. Various processes to cope with this process are being studied, and one of the mechanical etching processes is the powder blasting process. This process is a method of spraying fine particles, which has the advantage of being an effective process in manufacturing hard brittle materials. However, it is also a process that adversely affects the material surface roughness and material properties due to the impact of the injection of fine particles. In this study, after fabricating micro-channels in fused silica glass with excellent optical properties among the hard brittle materials, we used the nano indentation system to analyze the micro parts using nano-particles as well as machinability and surface roughness analysis of the processed surface. The analysis was performed for the effective processing of powder blasting.

Permittivity Properties of Titania-fused Silica (Titania-fused Silica의 유전특성 분석)

  • Kim, Han-Jun;Lee, Rae-Duk;Semenov, Yu.P.;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1803-1805
    • /
    • 1999
  • The thermal expansion coefficient of the titania-fused silica glass$(TiO_2-SiO_2)$ called KLR-1.1 is known to $0{\pm}0.03$ ppm/K, while that of normal fused-silica glasses is about +0.5 ppm/K at room temperature. To analysis the dielectric properties of the KLR-1.1, the sample with diameter of 30 mm and thinkness of 1 mm is covered with gold film. Its relative permittivity and dissipation factor of KLR-1.1 is evaluated to $4.011{\pm}0.012(1\sigma)$ and $(4.86{\pm}0.02){\times}10^{-4}(1{\sigma})$ at 1 kHz respectively. The measurement techniques used and results are more discussed in this paper.

  • PDF

Characteristics of MR Polishing using Carbonyl Iron Particles Coated with Xanthan Gum (Xanthan Gum으로 코팅된 Carbonyl Iron Particle를 이용한 자기유변유체 연마특성에 관한 연구)

  • Lee, J.W.;Ha, S.J.;Shin, B.C.;Kim, D.W.;Cho, M.W.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.138-143
    • /
    • 2012
  • A polishing method using magnetorheological (MR) fluid has been developed as a new precision technique to obtain a fine surface. The process uses a MR fluid that consists of magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water and stabilizers. But the CI particles in MR fluids cause a severe corrosion problem. When coated with Xanthan gum, the CI particles showed long-term stability in corrosive aqueous environment. The surface roughness obtained from the MR polishing process was evaluated. A series of experiments were performed on fused silica glass using prepared slurries and various process conditions, including different polishing times. Outstanding surface roughness of Ra=2.27nm was obtained on the fused silica glass. The present polishing method could be used to produce ultra-precision micro parts.

Characteristic of the femtosecond laser machining in glass (펨토초 레이어 기반 유리 내부가공 특성)

  • Yoo B.H.;Kim Y.M.;Cho S.H.;Chang W.S.;Kim J.G.;Whang K.H.;Lee D.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.239-240
    • /
    • 2006
  • For longer than picosecond pulses, bulk damage inside defect-free dielectrics involves the heating and multiplication of spurious electrons by the incident laser beam and transfer of this energy to the lattice. The situation is quite different for femtosecond pulses which are shorter than the time scale for electron energy transfer to the lattice. Damage caused by these pulses is produced with smaller statistical uncertainty and is controllable on a microscopic scale. These properties can be exploited to produce laser devices such as arrays of damage dots for all optical memories with high data storage density or arrays of parallel grooves to form transmission gratings. In this work, we observed characteristic of the femtosecond laser machining in BK7 and fused silica.

  • PDF

Direct writing of multi-layer diffraction grating inside fused silica glass by using a femtosecond laser (펨토초 레이저를 이용한 실리카 내부의 다층 회절격자 가공 기술)

  • Choi, Hun-Kook;Kim, Jin-Tae;Sohn, Ik-Bu;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.14 no.3
    • /
    • pp.17-20
    • /
    • 2011
  • We fabricated a multi-layer diffraction grating inside fused silica glass by using a femtosecond laser direct writing method. The femtosecond laser with a wavelength of 515 nm, a pulse width of 250 fs, a repetition rate of 100 kHz, and an average output power of 6 W was used. Two layer diffraction grating with a grating period of $6{\mu}m$ was successfully fabricated with the layer gap of 0.5, 1, 2, 3, and $5{\mu}m$, respectively. Also, we investigated the diffraction pattern by illuminating a He-Ne laser beam. Finally, we demonstrated the diffraction grating with a grating period of $3{\mu}m$ by adjusting the gap of each layer with a grating period of $6{\mu}m$. Femtosecond laser direct writing technology of multi-layer has a potential to fabricate the diffraction grating with a grating period of below $1.5{\mu}m$.

  • PDF

Study on Recycling of Scraps from Process of Silicon-single-crystal for Semiconductor

  • Lee, Sang-Hoon;Lee, Kwan-Hee;Hiroshi Okamoto
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.705-710
    • /
    • 2001
  • So for the quartz-glassy crucible wastes which was used for pulling up silicon-single-crystal ingot have simply reused for refractory raw-materials, or exhausted. This study is concerned on the advanced recycling-technology that is obtained by the proper micro-particle preparation process in order to fabricate fine amorphous silica filler for EMC (Epoxy Molding Compound). Therefore, this paper will deal with the physical, chemical and thermal pre-treatment process for efficient impurity removal and with the proper micro-particle process for producing the amorphous silicafiller. In view of the results, if the chemical, physical and thermal pre-treatment process for efficient elimination of impurity was passed, the purity of wasted fused glassy crucible is almost equal to the its of first anhydrous quartz glass. Thus, it was understood that this wasted fused glassy crucible was sufficient value of recycling, though it was damaged. When the ingot was fabricated, Phase transformation of crystallization by heat treatment (heat hysteresis phenomenon) was not changed. So, it was understood that as fused silica in the amorphous state, as It is, recycling possibility was very high

  • PDF

Nano-structuring of Transparent Materials by Femtosecond Laser Pulses

  • Sohn, Ik-Bu;Lee, Man-Seop;Chung, Jung-Yong;Cho, Sung-Hak
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Using tightly focused femtosecond laser pulses, we produce an optical waveguide and optical devices in transparent materials. This technique has the potential to generate not only channel waveguides, but also three-dimensional optical devices. In this paper, an optical splitter and U-grooves, which are used for fiber alignment, are simultaneously fabricated in a fused silica glass using near-IR femtosecond laser pulses. The fiber aligned optical splitter has a low insertion loss, less than 4㏈, including an intrinsic splitting loss of 3㏈ and excess loss due to the passive alignment of a single-mode fiber. Finally, we demonstrate the utility of the femtosecond laser writing technique by fabricating gratings at the surface and inside the silica glass.