• Title/Summary/Keyword: Fusarium equiseti.

Search Result 25, Processing Time 0.022 seconds

Fusarium spp. Isolated from Seed, Root and Cultivated Soil of Phaseouls vidissimus and Their Pathogenicity (녹두종자, 뿌리와 녹두 재배토양에서 분리된 Fusarium spp.와 병원성)

  • Paik Su Bong;Do Eun Su
    • Korean Journal Plant Pathology
    • /
    • v.3 no.1
    • /
    • pp.8-12
    • /
    • 1987
  • Fusarium oxysporum, F. moniliforme, F. solani, F. equiseti, F. semitectum, and F. sporotrichioides were detected from seeds, roots and cultivated soil of Phaseolous vidissimus collected from Kyung-gi Provincial Rural Development Administration. The rate of seedling desease incidence was $60\%$ by testing of seed germination using a large petri-dish. According to the blotter method, F. moniliforme showed $7\%$ infection at seed-coat and $2\%$ at cotyledon and embryo. Their pathogenicities of F. moniliforme, F. semitectum, F. equiseti, and F. sporotrichioides isolated from seeds were recognized on seedlings by water-agar test tube methods. F. oxysporum and F. solani isolated from infected-roots had their pathogenicity by water-agar test tube method but were weakly pathogenic by soil treatment method. Their pathogenicities of F. oxysporum. F. solani and F. uiseti isolated from cultivated-soil were recognized by water-agar test tube method. These F. oxysporum and equiseti isolates had their pathogenicities but F. solani was weakly pathogenic by soil treatment method.

  • PDF

Development of PCR-RFLP Technique for Identify Several Members of Fusarium incarnatum-equiseti Species Complex and Fusarium fujikuroi Species Complex

  • Pramunadipta, Syafiqa;Widiastuti, Ani;Wibowo, Arif;Suga, Haruhisa;Priyatmojo, Achmadi
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.254-260
    • /
    • 2022
  • Fusarium incarnatum-equiseti species complex (FIESC) contain over 40 members. The primer pair Smibo1FM/Semi1RM on the RPB2 partial gene has been reported to be able to identify Fusarium semitectum. The F. fujikuroi species complex (FFSC) contains more than 50 members. The F. verticillioides as a member of this complex can be identified by using VER1/VER2 primer pair on the CaM partial gene. In this research, the Smibo1FM/Semi1RM can amplify F. sulawesiense, F. hainanense, F. bubalinum, and F. tanahbumbuense, members of FIESC at 424 bp. The VER1/VER2 can amplify F. verticillioides, F. andiyazi, and F. pseudocircinatum, members of FFSC at 578 bp. Polymerase chain reaction-restriction fragment length polymorphism by using the combination of three restriction enzymes EcoRV, MspI, and HpyAV can differentiate each species of FIESC used. The two restriction enzymes HpaII and NspI can distinguish each species of FFSC used. The proper identification process is required for pathogen control in the field in order to reduce crop yield loss.

Identification and classification of pathogenic Fusarium isolates from cultivated Korean cucurbit plants

  • Walftor Bin Dumin;You-Kyoung Han;Jong-Han Park;Yeoung-Seuk Bae;Chang-Gi Back
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.121-128
    • /
    • 2022
  • Fusarium wilt disease caused by Fusarium species is a major problem affecting cultivated cucurbit plants worldwide. Fusarium species are well-known soil-borne pathogenic fungi that cause Fusarium wilt disease in several cucurbit plants. In this study, we aimed to identify and classify pathogenic Fusarium species from cultivated Korean cucurbit plants, specifically watermelon and cucumber. Thirty-six Fusarium isolates from different regions of Korea were obtained from the National Institute of Horticulture and Herbal Science Germplasm collection. Each isolate was morphologically and molecularly identified using an internal transcribed spacer of ribosomal DNA, elongation factor-1α, and the beta-tubulin gene marker sequence. Fusarium species that infect the cucurbit plant family could be divided into three groups: Fusarium oxysporum (F. oxysporum), Fusarium solani (F. solani), and Fusarium equiseti (F. equieti). Among the 36 isolates examined, six were non-pathogenic (F. equiseti: 15-127, F. oxysporum: 14-129, 17-557, 17-559, 18-369, F. solani: 12-155), whereas 30 isolates were pathogenic. Five of the F. solani isolates (11-117, 14-130, 17-554, 17-555, 17-556) were found to be highly pathogenic to both watermelon and cucumber plants, posing a great threat to cucurbit production in Korea. The identification of several isolates of F. equiseti and F. oxysporum, which are both highly pathogenic to bottle gourd, may indicate waning resistance to Fusarium species infection.

Antifungal Activities of Equisetin, Zearalenone, and 8'-Hydroxyaearalenone Isolated from Fusarium Species against Plant Pathogenic Fungi. (Fusarium속 균주로부터 분리한 Equisetin, Zearalenone 및 8'-Hydroxyzearalenone의 식물병원곰팡이에 대한 항균활성)

  • 김진철;박중협;최경자;김흥태;최용호;조광연
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.339-345
    • /
    • 2002
  • Antifungal substances were isolated from solid cultures of Fusarium equiseti FO-68 obtained from arrowhead and Fusarium sp. FO-510 obtained from egg plant, and then their antifungal activities were investigated against plant pathogenic fungi in vitro and in vivo. An antifungal substance was purifed from rice solid cultures of F. equiseti FO-68 and identified as equisetin. In addition, two antibiotic substances were isolated from solid cultures of Fusarium sp. FO-510 and their chemical structures were determined to be zearalenone and 8'-hydroxyzearalenone. in vitro, equisetin and zearalenone inhibited mycelial growth of most of the plant pathogenic fungi tested, whereas 8'-hydroxyzearalenone hardly inhibited fungal growth. In vitro, equisetin effectively controlled the development of tomato gray mold and tomato late blight. Zearalenone exhibited in vivo antifungal activity against rice blast, rice sheath blight, tomato gray mold, and tomato late blight. However, 8'-hydroxyzearale-none did not control the development of plant diseases except tomato gray mold. This is the first report on the antifungal activities of equisetin, zearalenone, and 8'-hydroxyzearalenone.

Fusarium Fruit Rot of Posthavest Oriental Melon (Cucumis melo L. var. makuwa Mak.) Caused by Fusarium spp. (Fusarium spp.에 의한 수확 후 참외 열매썩음병)

  • Kim, Jin-Won;Kim, Hyun-Jin
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.260-267
    • /
    • 2004
  • Fusarium spp. were isolated from the postharvest fruit rot of oriental melon fruits at commercial fruit markets in Korea during 2001 to 2003. The decayed fruits were covered with the fungal mycelia and eventually soft rotted. The disease started at the fruit stalk area, the calyx end of the fruit and skin of fruit. As the disease advanced, white to pinkish mycelia covered with the surface of decayed fruit. The cultural and morphological characteristic of Fusarium spp. were compared with descriptions of those reported previously, and identified as Fusarium equiseti, F. graminearum, F. moniliforme, F. proliferatum, F. sambucinum, and F. semitectum. Pathogenicity of the isolates was proved by artificial wound and unwound inoculation onto the healthy fruits. Two days after inoculation, aerial mycelia were noticed on the wound inocultion region of the fruit and developed soft rot symptoms. Although Fusarium spp. causing fruit rot disease in oriental melon have been reported in Korea, identification of the those species was not described. Therefore, this is the first report of Fusarium spp. causing postharvest fruit rot on oriental melon in Korea.

Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt

  • Hassan, Naglaa;Shimizu, Masafumi;Hyakumachi, Mitsuro
    • Mycobiology
    • /
    • v.42 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt.

First Molecular Characterization of Colletotrichum sp. and Fusarium sp. Isolated from Mangrove in Mexico and the Antagonist Effect of Trichoderma harzianum as an Effective Biocontrol Agent

  • Grano-Maldonado, Mayra I.;Ramos-Payan, Rosalio;Rivera-Chaparro, Fernando;Aguilar-Medina, Maribel;Romero-Quintana, Jose Geovanni;Rodriguez-Santiago, Amparo;Nieves-Soto, Mario
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.465-475
    • /
    • 2021
  • The aim of this study was to characterize potential fungal species affecting mangrove species in Mexico. The phytopathogens were identified based on morphological and molecular characteristics using internal transcribed spacer (ITS1/ITS4) primers then sequenced and compared with the other related sequences in GenBank (NCBI). Three fungal species were identified as Colletotrichum queenslandicum (Weir and Johnst, 2012) from black mangrove (Avicennia germinans); Colletotrichum ti (Weir and Johnst, 2012) from white mangrove (Laguncularia racemosa) and buttonwood mangrove (Conocarpus erectus); Fusarium equiseti (Corda) from red mangrove (Rhizophora mangle). In addition, C. ti and F. equiseti were identified from mango Mangifera indica L. sampled close by the mangrove area. This study provides first evidence of anthracnose on four mangrove species caused by Colletotrichum and Fusarium species in the "Términos" coastal lagoon in Campeche State southern Mexico. This is the first time that C. queenslandicum and C. ti are reported in Mexico. F. equiseti has not been reported affecting M. indica and R. mangle until the present work. Little is known regarding fungal diseases affecting mangroves in Mexico. These ecosystems are protected by Mexican laws and may be threatened by these pathogenic fungus. This is the first report of the effect of Trichoderma harzianum TRICHO-SIN as an effective biological control against of Colletotrichum and Fusarium species.

Chromosomal Studies on the Genus Fusarium (Fusarium속의 염색체 분석)

  • 민병례
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.342-347
    • /
    • 1989
  • by use of HCl-Giemsa technique and light microscope, dividing vegetative nuclei in hyphae of Fusarium species were observed and the results are summerized. The chromosome number of these fungi was ranged 4 to 8. Of the 20 strains, the highest haploid chromosome number is 8 in F. solani S Hongchun K4, F. moniliforme (from banana) and F. raphani (from radish). The lowest is 4 in F. sporotrichioides NRRL 3510 and F. equiseti KFCC 11843 IFO 30198. F. solani 7468 (from Sydney), F. solani 7475 (from Sydney), F. oxysporum(from tomato). F. roseum (from rice), F. sporotrichioides C Jngsun 1, F. equiseti C Kosung 1 and F. avenaceum 46039 are n=7. F. moniliforme (from rice) F. graminearum, F. proliferatum 6787 (from Syndey), F. proliferatum 7459 (from Synder) and F. anguioides ATCC 20351 are n=6. F. moniliforme NRRL 2284, F. poae NRRL 3287 and F. trincinctum NRRL 3299 are n=5. From these results, it may be concluded that the basic haploid chromosome number of the genus Fusarium is 4 and mat have been evolutionary variation of chromosome number through aneuploidy and polyploidy.

  • PDF

Fungicide Sensitivity among Isolates of Colletotrichum truncatum and Fusarium incarnatum-equiseti Species Complex Infecting Bell Pepper in Trinidad

  • Ramdial, Hema;Abreu, Kathryn De;Rampersad, Sephra N.
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.118-124
    • /
    • 2017
  • Bell pepper is an economically important crop worldwide; however, production is restricted by a number of fungal diseases that cause significant yield loss. Chemical control is the most common approach adopted by growers to manage a number of these diseases. Monitoring for the development to resistance to fungicides in pathogenic fungal populations is central to devising integrated pest management strategies. Two fungal species, Fusarium incarnatum-equiseti species complex (FIESC) and Colletotrichum truncatum are important pathogens of bell pepper in Trinidad. This study was carried out to determine the sensitivity of 71 isolates belonging to these two fungal species to fungicides with different modes of action based on in vitro bioassays. There was no significant difference in log effective concentration required to achieve 50% colony growth inhibition ($LogEC_{50}$) values when field location and fungicide were considered for each species separately based on ANOVA analyses. However, the $LogEC_{50}$ value for the Aranguez-Antracol locationfungicide combination was almost twice the value for the Maloney/Macoya-Antracol location-fungicide combination regardless of fungal species. $LogEC_{50}$ values for Benomyl fungicide was also higher for C. truncatum isolates than for FIESC isolates and for any other fungicide. Cropping practices in these locations may explain the fungicide sensitivity data obtained.

Fusarium Fruit Rot of Citrus in Jeju Island

  • Hyun, Jae-Wook;Lee, Seong-Chan;Kim, Dong-Hwan;Ko, Sang-Wook;Kim, Kwang-Sik
    • Mycobiology
    • /
    • v.28 no.3
    • /
    • pp.158-162
    • /
    • 2000
  • Twenty-three isolates of Fusarium spp. were obtained from decayed citrus fruits in the fields and storages in 1998-1999. Of them, six and five isolates belonged to F. proliferatum and F. moniliforme, respectively, which were the most common. F. solani and F. sambucinum had each two isolates, F. equiseti had one isolate and seven isolates were unidentified. They produced symptoms of two types in pathogenicity test: those with leathery, beige to light or dark brown, and sunken lesions without surface mycelium (type-1) and those with lesions covered with white, beige or pink surface mycelium (type-2). Four of six isolates identified to F. proliferatum and two unidentified isolates produced type-1 lesions, and all isolates identified to F. moniliforme, F. solani, F. sambucinum, F. equiseti and five unidentified isolates produced type-2 lesions.

  • PDF